scholarly journals Is New Always Better? Frontiers in Global Climate Datasets for Modeling Treeline Species in the Himalayas

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 543
Author(s):  
Maria Bobrowski ◽  
Johannes Weidinger ◽  
Udo Schickhoff

Comparing and evaluating global climate datasets and their effect on model performance in regions with limited data availability has received little attention in ecological modeling studies so far. In this study, we aim at comparing the interpolated climate dataset Worldclim 1.4, which is the most widely used in ecological modeling studies, and the quasi-mechanistical downscaled climate dataset Chelsa, as well as their latest versions Worldclim 2.1 and Chelsa 1.2, with regard to their suitability for modeling studies. To evaluate the effect of these global climate datasets at the meso-scale, the ecological niche of Betula utilis in Nepal is modeled under current and future climate conditions. We underline differences regarding methodology and bias correction between Chelsa and Worldclim versions and highlight potential drawbacks for ecological models in remote high mountain regions. Regarding model performance and prediction plausibility under current climatic conditions, Chelsa-based models significantly outperformed Worldclim-based models, however, the latest version of Chelsa contains partially inherent distorted precipitation amounts. This study emphasizes that unmindful usage of climate data may have severe consequences for modeling treeline species in high-altitude regions as well as for future projections, if based on flawed current model predictions. The results illustrate the inevitable need for interdisciplinary investigations and collaboration between climate scientists and ecologists to enhance climate-based ecological model quality at meso- to local-scales by accounting for local-scale physical features at high temporal and spatial resolution.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dan-Dan Yu ◽  
Shan Li ◽  
Zhong-Yang Guo

The evaluation of climate comfort for tourism can provide information for tourists selecting destinations and tourism operators. Understanding how climate conditions for tourism evolve is increasingly important for strategic tourism planning, particularly in rapidly developing tourism markets like China in a changing climate. Multidimensional climate indices are needed to evaluate climate for tourism, and previous studies in China have used the much criticized “climate index” with low resolution climate data. This study uses the Holiday Climate Index (HCI) and daily data from 775 weather stations to examine interregional differences in the tourist climate comfortable period (TCCP) across China and summarizes the spatiotemporal evolution of TCCP from 1981 to 2010 in a changing climate. Overall, most areas in China have an “excellent” climate for tourism, such that tourists may visit anytime with many choices available. The TCCP in most regions shows an increasing trend, and China benefits more from positive effects of climate change in climatic conditions for tourism, especially in spring and autumn. These results can provide some scientific evidence for understanding human settlement environmental constructions and further contribute in improving local or regional resilience responding to global climate change.


Data ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 72 ◽  
Author(s):  
Abhishek Gaur ◽  
Michael Lacasse ◽  
Marianne Armstrong

Buildings and homes in Canada will be exposed to unprecedented climatic conditions in the future as a consequence of global climate change. To improve the climate resiliency of existing and new buildings, it is important to evaluate their performance over current and projected future climates. Hygrothermal and whole building simulation models, which are important tools for assessing performance, require continuous climate records at high temporal frequencies of a wide range of climate variables for input into the kinds of models that relate to solar radiation, cloud-cover, wind, humidity, rainfall, temperature, and snow-cover. In this study, climate data that can be used to assess the performance of building envelopes under current and projected future climates, concurrent with 2 °C and 3.5 °C increases in global temperatures, are generated for 11 major Canadian cities. The datasets capture the internal variability of the climate as they are comprised of 15 realizations of the future climate generated by dynamically downscaling future projections from the CanESM2 global climate model and thereafter bias-corrected with reference to observations. An assessment of the bias-corrected projections suggests, as a consequence of global warming, future increases in the temperatures and precipitation, and decreases in the snow-cover and wind-speed for all cities.


2017 ◽  
Vol 68 (11) ◽  
pp. 915 ◽  
Author(s):  
R. Iglesias-García ◽  
E. Prats ◽  
F. Flores ◽  
M. Amri ◽  
A. Mikić ◽  
...  

Mediterranean environments are of most interest to study pea adaptability to terminal drought conditions especially in the current context of global climate change. In our work we have tested nine pea cultivars in five South European and North African locations, characterised by different agro climatic conditions within the Mediterranean climate. Data were processed through the additive main effects and multiplicative interaction analysis. Grain yield, aboveground biomass and flowering date were assessed within each mega-environment with parametric and non-parametric methods, establishing ranks for the genotypes within each condition attending to their stability parameters and mean values. The field analysis revealed HR1 as a wide-adapted genotype, whereas others such as Desso showed the best adaptation in South Mediterranean areas. Our results also highlighted the potential interest of these genotypes and others (i.e. Messire and ZP108) in breeding programs and further studies on drought tolerance.


2021 ◽  
Vol 13 (13) ◽  
pp. 7489
Author(s):  
Veronica Alampi Sottini ◽  
Elena Barbierato ◽  
Iacopo Bernetti ◽  
Irene Capecchi

Wine tourism is one of the best opportunities for rural development, but because it is partially exposed to climatic conditions, it is a climate-vulnerable tourism activity. However, an understanding of the potential impacts of global climate change on this popular activity remains limited. This study proposes a new methodology that combines current daily gridded climate data from the E-OBS project with big spatiotemporal data from the Flickr photo-sharing platform through a generalized additive model This methodology was implemented to study the potential impacts on tourism flows due to climate change and to make predictions about the future using data from the CMIP5 project. We applied the methodology to 5 European wine tourism regions: Alsace (FR), Chianti (IT), La Rioja (SP), Langhe-Monferrato (IT), and Moselle (DE). Results show an increased probability of presence and increased deseasonalization of tourism in all study areas and an anticipation of peak presence from summer to spring in three of the five regions. We believe that these results can be useful for public and private stakeholders to adapt the offer of wine tourism services to changes in demand and to direct the organization of events such as festivals and thematic tours.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 981
Author(s):  
Elena Stoll ◽  
Florian Hanzer ◽  
Felix Oesterle ◽  
Johanna Nemec ◽  
Johannes Schöber ◽  
...  

Glacio-hydrological models combine both glacier and catchment hydrology modeling and are used to assess the hydrological response of high-mountain glacierized catchments to climate change. To capture the uncertainties from these model combinations, it is essential to compare the outcomes of several model entities forced with the same climate projections. For the first time, we compare the results of two completely independent glacio-hydrological models: (i) HQsim-GEM and (ii) AMUNDSEN. In contrast to prevailing studies, we use distinct glacier models and glacier initialization times. At first glance, the results achieved for future glacier states and hydrological characteristics in the Rofenache catchment in Ötztal Alps (Austria) appear to be similar and consistent, but a closer look reveals clear differences. What can be learned from this study is that low-complexity models can achieve higher accuracy in the calibration period. This is advantageous especially when data availability is weak, and priority is given to efficient computation time. Furthermore, the time and method of glacier initialization play an important role due to different data requirements. In essence, it is not possible to make conclusions about the model performance outside of the calibration period or more specifically in the future. Hence, similar to climate modeling, we suggest considering different modeling approaches when assessing future catchment discharge or glacier evolution. Especially when transferring the results to stakeholders, it is vital to transparently communicate the bandwidth of future states that come with all model results.


2021 ◽  
Vol 7 (1) ◽  
pp. 87-95
Author(s):  
Shuldan L ◽  

The global climate system shows signs of rapid changes called a Climatic Transition in specialized literature. The article has studied climate trends in territorial (global, macro-climatic, meso-climatic, and micro-climatic) and time limits (historical overview; current state; long-term, medium-term, and short-term prospects). The most probable medium-term forecasts until 2050 have been taken as a basis. The climate data analysis for the previous 60 years has been carried out and continued by our research with linear averaging of data for 2009-2020, the dynamics of main parameters changes on the territory of Ukraine and for Lviv city have been determined. The main requirements for architectural solutions in various climatic conditions have been formulated. Correlation analysis of energy efficiency improvements in architecture and current external micro-climatic conditions has been performed. It has been proposed to make appropriate changes to the regulatory documents.


2021 ◽  
Vol 23 (2) ◽  
pp. 189-193
Author(s):  
NISHA SAHU ◽  
G. P. OBI REDDY ◽  
B. DASH ◽  
NIRMAL KUMAR ◽  
S. K. SINGH

In this study, a quantitative assessment of spatial extent of arid and semi-arid climatic zones of India was performed for the period from 1988 to 2018 using potential evapo-transpiration (PET) calculated by Modified Penman Method, estimated from global climate data sets. Climatic water balances computed for 625 stations across the country are used for classifying to bio-climate types based on moisture index and areas falling under arid climatic zones in India are delineated using ArcGIS 10.5. It was noticed a considerable changes in the country’s arid and semi-arid climatic zones between the two periods; 1992 and 2018. Overall, there has been a net percent change in hyper arid, typic arid and semi arid (dry) areas is 5.62, 1.62 and 7.17 percent, respectively. Dryness and wetness are increasing in different parts of the country. There is also change in rainfall, PET and moisture index over a period of time which is vital to determine aridity pattern of any region. Thus, results are of great significance for studying the assessment of temporal and spatial dry climatic water balance of India, which can help immensely in the management of water resources and sustainability of crop production under changing climatic conditions.


2021 ◽  
Vol 18 (5) ◽  
pp. 692-700
Author(s):  
Dereje Mekonnen Bekele ◽  
Melkamu Teshome Ayana ◽  
Abdella Kemal Mohammed ◽  
Tarun Kumar Lohani ◽  
Mohammad Shabaz

Purpose To assess the impacts of climate change on stream flow and evaluation of reservoir performances, reliability, resilience and vulnerability (RRV) indices are contemplated. Precipitation, temperature (Tmax, Tmin), relative humidity and solar radiation are the hydrological and meteorological data which have been used extensively. Climate data like RCP2.6, RCP4.5 and RCP8.5 were evaluated for the base period 1976–2005 and future climate scenario for 2021–2050 and 2051–2080 as per the convenience. Design/methodology/approach The hydrologic engineering center hydrologic modeling system (HEC-HMS) model was used to simulate the current and future inflow volume into the reservoir. The model performance resulted as 0.76 Nash-Sutcliffe efficiency (NSE), 0.78 R2 and −3.17 D and during calibration the results obtained were 0.8 NSE, 0.82 R2 and 2.1 D. The projected climate scenario illustrates an increasing trend for both maximum and minimum temperature though a decreasing trend was documented for precipitation. The average time base reliability of the reservoirs was less than 50% without reservoir condition and greater than 50% for other conditions but volumetric reliability and resilience varies between 50% and 100% for all conditions. The vulnerability result of reservoirs may face shortage of flow ranging from 5.7% to 33.8%. Findings Evaluating reservoir simulation and hydropower generation for different climate scenarios by HEC-ResSim model, the energy generated for upper dam ranges from 349.4 MWhr to 331.2 MWhr and 4045.82 MWhr and 3946.74 MWhr for short and long-term future scenario, respectively. RCP for Tmax and Tmin goes on increasing whereas precipitation and inflow to reservoir decreases owing to increase in evapotranspiration. Under diverse climatic conditions power production goes on varying simultaneously. Originality/value This paper is original and all the references are properly cited.


2018 ◽  
Vol 937 (7) ◽  
pp. 23-34 ◽  
Author(s):  
I.N. Vladimirov

The article considers a new approach to landscape mapping based on the synthesis of remote sensing data of high and medium spatial resolution, a digital elevation model, maps of various thematic contents, a set of global climate data, and materials of field research. The map of the Baikalian’s Siberia geosystems is based on the principles of the multistage regional-typological and structural-dynamic classification of geosystems proposed by Academician V.B. Sochava. The structure of the geosystems of the Baikalian Siberia is characterized by great complexity, both in the set of natural complexes and in the degree of their contrast. The regional classification range covers the geosystems inherent in different subcontinents of Asia and reflects their interpenetration, being a unique landscape-situational example of Siberian nature within North Asia. The map of the geosystems of the Baikalian Siberia reflects the main structural and dynamic diversity of geosystems in the region in the systems of their geographic and genetic spatial structures. These landscape cartographic studies fit into a single system of geographic forecasting and create a new fundamental scientific basis for developing recommendations for optimizing nature management in the Baikal region within the framework of implementing state environmental policy.


Sign in / Sign up

Export Citation Format

Share Document