scholarly journals The Multi-Time Scale Changes in Air Pollutant Concentrations and Its Mechanism before and during the COVID-19 Periods: A Case Study from Guiyang, Guizhou Province

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1490
Author(s):  
Zhihua Su ◽  
Xin Li ◽  
Yunlong Liu ◽  
Bing Deng

The lockdown during the coronavirus disease 2019 (COVID-19) pandemic provides a scarce opportunity to assess the efficiency of air pollution mitigation. Herein, the monitoring data of air pollutants were thoroughly analyzed together with meteorological parameters to explore the impact of human activity on the multi-time scale changes of air pollutant concentrations in Guiyang city, located in Southwest China. The results show that the COVID-19 lockdown had different effects on the criteria air pollutants, i.e., PM2.5 (diameter ≤ 2.5 μm), PM10 (diameter ≤ 10 μm), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) concentrations. The lockdown caused a significant drop in NO2 concentration. During the first-level lockdown period, the NO2 concentration declined sharply by 8.41 μg·m−3 (45.68%). The decrease in NO concentration caused the “titration effect” to weaken, leading to a sharp increase in O3 concentration. Although human activities resumed partially and the “titration effect” enhanced certainly during the second-level lockdown period, the meteorological conditions became more conducive to the formation of O3 by photochemical reactions. Atmosphere oxidation was enhanced to promote the generation of secondary aerosols through gas–particle transitions, thus compensating for the reduced primary emission of PM2.5. The implication of this study is that the appropriate air pollution control policies must be initiated to suppress the secondary generation of both PM2.5 and O3.

Author(s):  
B. Yorkor ◽  
T. G. Leton ◽  
J. N. Ugbebor

This study investigated the temporal variations of air pollutant concentrations in Ogoni area, Niger Delta, Nigeria. The study used hourly data measured over 8 hours for 12 months at selected locations within the area. The analyses were based on time series and time variations techniques in Openair packages of R programming software. The variations of air pollutant concentrations by time of day and days of week were simulated. Hours of the day, days of the week and monthly variations were graphically simulated. Variations in the mean concentrations of air pollutants by time were determined at 95 % confidence intervals. Sulphur dioxide (SO2), Nitrogen dioxide (NO2), ground level Ozone (O3) and fine particulate matter (PM2.5) concentrations exceeded permissible standards. Air pollutant concentrations showed increase in January, February, November and December compared to other months. Simulation showed that air pollutants varied significantly by hours-of-the-day and days-of-the-week and months-of-the-year. Analysis of temporal variability revealed that air pollutant concentrations increased during weekdays and decreased during weekends. The temporal variability of air pollutants in Ogoni area showed that anthropogenic activities were the main sources of air pollution in the area, therefore further studies are required to determine air pollutant dispersion pattern and evaluation the potential sources of air pollution in the area.


Author(s):  
Han Cao ◽  
Bingxiao Li ◽  
Tianlun Gu ◽  
Xiaohui Liu ◽  
Kai Meng ◽  
...  

Evidence regarding the effects of environmental factors on COVID-19 transmission is mixed. We aimed to explore the associations of air pollutants and meteorological factors with COVID-19 confirmed cases during the outbreak period throughout China. The number of COVID-19 confirmed cases, air pollutant concentrations, and meteorological factors in China from January 25 to February 29, 2020, (36 days) were extracted from authoritative electronic databases. The associations were estimated for a single-day lag as well as moving averages lag using generalized additive mixed models. Region-specific analyses and meta-analysis were conducted in 5 selected regions from the north to south of China with diverse air pollution levels and weather conditions and sufficient sample size. Nonlinear concentration–response analyses were performed. An increase of each interquartile range in PM2.5, PM10, SO2, NO2, O3, and CO at lag4 corresponded to 1.40 (1.37–1.43), 1.35 (1.32–1.37), 1.01 (1.00–1.02), 1.08 (1.07–1.10), 1.28 (1.27–1.29), and 1.26 (1.24–1.28) ORs of daily new cases, respectively. For 1°C, 1%, and 1 m/s increase in temperature, relative humidity, and wind velocity, the ORs were 0.97 (0.97–0.98), 0.96 (0.96–0.97), and 0.94 (0.92–0.95), respectively. The estimates of PM2.5, PM10, NO2, and all meteorological factors remained significantly after meta-analysis for the five selected regions. The concentration–response relationships showed that higher concentrations of air pollutants and lower meteorological factors were associated with daily new cases increasing. Higher air pollutant concentrations and lower temperature, relative humidity and wind velocity may favor COVID-19 transmission. Controlling ambient air pollution, especially for PM2.5, PM10, NO2, may be an important component of reducing risk of COVID-19 infection. In addition, as winter months are arriving in China, the meteorological factors may play a negative role in prevention. Therefore, it is significant to implement the public health control measures persistently in case another possible pandemic.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Fengzhu Tan ◽  
Weijie Wang ◽  
Sufen Qi ◽  
Haidong Kan ◽  
Xinpei Yu ◽  
...  

Abstract Background Many studies have reported the impact of air pollution on cardiovascular disease (CVD), but few of these studies were conducted in severe haze-fog areas. The present study focuses on the impact of different air pollutant concentrations on daily CVD outpatient visits in a severe haze-fog city. Methods Data regarding daily air pollutants and outpatient visits for CVD in 2013 were collected, and the association between six pollutants and CVD outpatient visits was explored using the least squares mean (LSmeans) and logistic regression. Adjustments were made for days of the week, months, air temperature and relative humidity. Results The daily CVD outpatient visits for particulate matter (PM10 and PM2.5), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) in the 90th-quantile group were increased by 30.01, 29.42, 17.68, 14.98, 29.34%, and − 19.87%, respectively, compared to those in the <10th-quantile group. Odds ratios (ORs) and 95% confidence intervals (CIs) for the increase in daily CVD outpatient visits in PM10 300- and 500-μg/m3, PM2.5 100- and 300-μg/m3 and CO 3-mg/m3 groups were 2.538 (1.070–6.020), 7.781 (1.681–36.024), 3.298 (1.559–6.976), 8.72 (1.523–49.934), and 5.808 (1.016–33.217), respectively, and their corresponding attributable risk percentages (AR%) were 60.6, 87.15, 69.68, 88.53 and 82.78%, respectively. The strongest associations for PM10, PM2.5 and CO were found only in lag 0 and lag 1. The ORs for the increase in CVD outpatient visits per increase in different units of the six pollutants were also analysed. Conclusions All five air pollutants except O3 were positively associated with the increase in daily CVD outpatient visits in lag 0. The high concentrations of PM10, PM2.5 and CO heightened not only the percentage but also the risk of increased daily CVD outpatient visits. PM10, PM2.5 and CO may be the main factors of CVD outpatient visits.


2017 ◽  
Vol 17 (22) ◽  
pp. 13921-13940 ◽  
Author(s):  
Pengfei Liang ◽  
Tong Zhu ◽  
Yanhua Fang ◽  
Yingruo Li ◽  
Yiqun Han ◽  
...  

Abstract. To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter  ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction of the PM2.5 concentration during APEC and 38 and 25 % during the Victory Parade, respectively, based on the assumption that the concentrations of air pollutants are only determined by meteorological conditions and emission intensities. We also estimated the contribution of meteorological conditions and control strategies in reducing the concentrations of gaseous pollutants and PM2.5 components with the GLMs, revealing the effective control of anthropogenic emissions.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1628
Author(s):  
Houli Zhang ◽  
Shibing You ◽  
Miao Zhang ◽  
Difei Liu ◽  
Xuyan Wang ◽  
...  

The impact of air pollution on human health is becoming increasingly severe, and economic losses are a significant impediment to economic and social development. This paper investigates the impact of air pollutants on the respiratory system and its action mechanism by using information on inpatients with respiratory diseases from two IIIA (highest) hospitals in Wuhan from 2015 to 2019, information on air pollutants, and meteorological data, as well as relevant demographic and economic data in China. This paper describes the specific conditions of air pollutant concentrations and respiratory diseases, quantifies the degree of correlation between the two, and then provides a more comprehensive assessment of the economic losses using descriptive statistical methods, the generalized additive model (GAM), cost of illness approach (COI), and scenario analysis. According to the findings, the economic losses caused by PM2.5, PM10, SO2, NO2, and CO exposure are USD 103.17 million, USD 70.54 million, USD 98.02 million, USD 40.35 million, and USD 142.38 million, for a total of USD 454.46 billion, or approximately 0.20% of Wuhan’s GDP in 2019. If the government tightens control of major air pollutants and meets the WHO-recommended criterion values, the annual evitable economic losses would be approximately USD 69.4 million or approximately 0.03% of Wuhan’s GDP in 2019. As a result, the relevant government departments must strengthen air pollution control to mitigate the impact of air pollution on population health and the associated economic losses.


2016 ◽  
Author(s):  
Ting Ting Liu ◽  
Sunling Gong ◽  
Meng Yu ◽  
Qi Chao Zhao ◽  
Huai Rui Li ◽  
...  

Abstract. Northern China in the 2015 winter months of November and December has witnessed the most severe air pollution phenomena since the 2013 winter haze events occurred, which triggered the first ever Red Alert in the air pollution control history of Beijing, with an instantaneous PM2.5 concentration over 1 mg m−3. Analysis and modeling results show that the worsening meteorology conditions are the main reason behind this unusual increase of air pollutant concentrations and the emission control measures taken during this period of time have contributed to mitigate the air pollution in the region. This work provides a scientific insight of the emission control measures vs. meteorology impacts for the period.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3264
Author(s):  
Aurelia Rybak ◽  
Aleksandra Rybak

This article presents the research on the analysis of the impact of social isolation caused by the COVID-19 pandemic on gaseous air pollutant concentrations. For this purpose, the authors presented (thermal maps) and analyzed the concentrations of selected gases such as NO2, CO, SO2, and PM2.5 particles during the strict quarantine period in Poland and other EU countries. Statistical analysis of the concentration level of these gases was performed. It was noticed that in Poland, Germany, and France, the concentrations of such gases as CO, NO2, and PM2.5 particles decreased, while in Italy and Spain, the tendency was the opposite. To verify whether the discovered dependencies are not a natural continuation of the trends shaping the given phenomenon, the time series of gas and PM2.5 particle emissions were analyzed. On this basis, the emission forecast up to 2023 was created, using the ARIMA class models. The obtained results allowed to construct five scenarios for the development of NO2, CO, SO2, and PM2.5 emissions until 2023, considering the impact of the COVID-19 pandemic. It was stated that in the optimistic scenario, in 2023, a decrease in CO, NO2, and PM2.5 emissions could be achieved by maximums of 51%, 95%, and 28%, respectively.


2016 ◽  
Author(s):  
Tingting Liu ◽  
Sunling Gong ◽  
Meng Yu ◽  
Qichao Zhao ◽  
Huairui Li ◽  
...  

Abstract. Northern China in the 2015 winter months of November and December has witnessed the most severe air pollution phenomena since the 2013 winter haze events occurred, which triggered the first ever Red Alert in the air pollution control history of Beijing, with an instantaneous PM2.5 concentration over 1 mg m−3. Analysis and modeling results show that the worsening meteorology conditions are the main reason behind this unusual increase of air pollutant concentrations and the emission control measures taken during this period of time have contributed to mitigate the air pollution in the region. This work provides a scientific insight of the emission control measures vs. meteorology impacts for the period.


2019 ◽  
pp. 14-22
Author(s):  
Artur Stelęgowski

Correlations between concentrations of selected air pollutants were analyzed in different areas in central Poland from 2012-2016. Three neighboring voivodeships (Lower Silesian, Lodz, and Masovian), were selected for which specific measurement locations were designated in urban and rural areas. The characteristics of the location of monitoring stations allowed to distinguish the following types of measurement stations: “urbantransport”, “urban-background", "suburban-background", "town-background", and "rural-background". Therefore, using the Pearson's linear correlation coefficient, it was possible to analyze the interrelations between the occurrence of air pollution in various types of areas. It was found that the coefficient changed along with the type of area. Moreover, it turned out that the coefficient decreased in each voivodeship along with a decrease in the population density of the analyzed areas. In addition, concentrations of various air pollutants in given areas were compared. Also, it was observed that the strongest correlations occur between the results of calculations from measurement stations located in the same province.


Sign in / Sign up

Export Citation Format

Share Document