scholarly journals Aerosol Light Absorption at 1064 nm: Pollution Sources, Meteorological Parameters and Gas Pollutants in Qingdao Coastal Area, China

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1553
Author(s):  
Jie Chen ◽  
Wenyue Zhu ◽  
Qiang Liu ◽  
Xianmei Qian ◽  
Xuebin Li ◽  
...  

A two-month sampling campaign was carried out from 1 November to 30 December 2019, to investigate the light absorption of aerosols at coastal sites in Qingdao. The average values and standard deviations of the absorption coefficient (OAC) at λ = 1064 nm during the measurement period were 18.52 ± 13.31 Mm−1. Combined with the backward trajectory model, the aerosol absorption coefficient and gas pollution concentration of six possible air mass trajectories were obtained and calculated. The maximum absorption coefficient of local air masses was approximately 20.4 Mm−1 and anthropogenic pollution originated from mainly local sources in the Jiaozhou area. In our measurements at this site, the results also showed that there was a positive correlation between relative humidity (RH) and aerosol absorption. Without considering other factors, the size of aerosol particles grew with the increasing of RH, which changed the nonlinear relationship between the size and the absorption cross section of aerosol particles subsequently. In addition, the correlations between gas pollutants and OAC were calculated. The atmospheric environment is complex in sea–land intersection areas, especially in coastal cities. Analysis of various aerosol sources, meteorological conditions, and gas precursors enhances the study of aerosol optical absorption.

2014 ◽  
Vol 31 (4) ◽  
pp. 923-929 ◽  
Author(s):  
Rudra Aryal ◽  
Paul Terman ◽  
Kenneth J. Voss

Abstract Two reflectance techniques, based on Kubelka–Munk (K-M) theory and on the Beer–Lambert (B-L) law, were used to measure the absorption coefficient of aerosol particles collected on a filter. The two methods agreed, with the B-L technique being higher than the K-M method by a factor of 1.10, but with a correlation, r2, between the two methods of 0.99. The aerosol absorption Ångström exponents (AAE) between the two methods also agreed within 0.4 and were in the range of measurements reported in the literature with other techniques. The precision of the two methods depends on the volume of air sampled, but a typical sampling scheme (100 L min−1, 10 cm2 sampling area, full day of sampling) results in a precision in the measurement of the aerosol light absorption coefficient of 0.05 Mm−1.


2020 ◽  
Author(s):  
Eija Asmi ◽  
John Backman ◽  
Henri Servomaa ◽  
Aki Virkkula ◽  
Maria Gini ◽  
...  

Abstract. The Arctic absorbing aerosols have a high potential to accelerate global warming. Accurate and sensitive measurements of their concentrations, variability and atmospheric mixing are needed. Filter-based aerosol light absorption measurement methods are the most widely applied in the Arctic. Those will be the focus of this study. Aerosol light absorption was measured during one month field campaign in June–July 2019 at the Pallas Global Atmospheric Watch (GAW) station in northern Finland. The campaign provided a real-world test for different absorption measurement techniques supporting the goals of the EMPIR BC metrology project in developing aerosol absorption standard and reference methods. Very low aerosol concentrations prevailed during the campaign which imposed a challenge for the instruments detection. In this study we compare the results from five filter-based absorption techniques: Aethalometer models AE31 and AE33, Particle Soot Absorption Photometer (PSAP), Multi Angle Absorption Photometer (MAAP) and Continuous Soot Monitoring System (COSMOS), and from one indirect method called Extinction Minus Scattering (EMS). The sensitivity of the filter-based techniques was adequate to measure aerosol light absorption coefficients down to around 0.05 Mm−1 levels. The average value measured during the campaign using MAAP was 0.09 Mm−1 (at wavelength of 637 nm). When data were averaged for > 1 h, an agreement of around 20 % was obtained between instruments. COSMOS measured systematically the lowest absorption coefficient values, which was expected due to the sample pre-treatment in COSMOS inlet. PSAP showed the best linear correlation with MAAP (R2 = 0.85), followed by AE33 and COSMOS (R2 = 0.84). The noisy data from AE31 resulted in a slightly lower, yet a significant, correlation with MAAP (R2 = 0.46). In contrast to the filter-based techniques, the sensitivity of the indirect EMS method to measure aerosol absorption was not adequate at such low concentrations levels. An absorption coefficient on the order of > 1 Mm−1 was estimated as the lowest limit, to reliably distinguish the signal from the noise. Throughout the campaign the aerosol was highly scattering with an average single-scattering albedo of 0.97. Two different air-mass origins could be identified: the north-east and from the north-west. The north-eastern air masses contained higher fraction of thickly coated light absorbing particles than the westerly air masses. Aerosol scattering, absorption and the particle coating thickness increased on the last ten days of the campaign during the north-eastern air flow. The simultaneous changes in aerosol source region, mixing state, concentration and particle optical size were reflected in the instruments' response in a complex way. The observed decrease in aerosol size suggested additional activation of secondary particle formation mechanisms. The results demonstrate the challenges encountered in the Arctic absorbing aerosol measurements. The applicability and uncertainties of different techniques are discussed and new knowledge on the absorbing aerosol characteristics in summer Arctic air masses reference to the source region is provided.


2020 ◽  
Vol 20 (8) ◽  
pp. 4735-4756 ◽  
Author(s):  
Cyrielle Denjean ◽  
Thierry Bourrianne ◽  
Frederic Burnet ◽  
Marc Mallet ◽  
Nicolas Maury ◽  
...  

Abstract. Southern West Africa (SWA) is an African pollution hotspot but a relatively poorly sampled region of the world. We present an overview of in situ aerosol optical measurements collected over SWA in June and July 2016 as part as of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) airborne campaign. The aircraft sampled a wide range of air masses, including anthropogenic pollution plumes emitted from the coastal cities, long-range transported biomass burning plumes from central and southern Africa and dust plumes from the Sahara and Sahel region, as well as mixtures of these plumes. The specific objective of this work is to characterize the regional variability of the vertical distribution of aerosol particles and their spectral optical properties (single scattering albedo: SSA, asymmetry parameter, extinction mass efficiency, scattering Ångström exponent and absorption Ångström exponent: AAE). The first findings indicate that aerosol optical properties in the planetary boundary layer were dominated by a widespread and persistent biomass burning loading from the Southern Hemisphere. Despite a strong increase in aerosol number concentration in air masses downwind of urban conglomerations, spectral SSA were comparable to the background and showed signatures of the absorption characteristics of biomass burning aerosols. In the free troposphere, moderately to strongly absorbing aerosol layers, dominated by either dust or biomass burning particles, occurred occasionally. In aerosol layers dominated by mineral dust particles, SSA varied from 0.81 to 0.92 at 550 nm depending on the variable proportion of anthropogenic pollution particles externally mixed with the dust. For the layers dominated by biomass burning particles, aerosol particles were significantly more light absorbing than those previously measured in other areas (e.g. Amazonia, North America), with SSA ranging from 0.71 to 0.77 at 550 nm. The variability of SSA was mainly controlled by variations in aerosol composition rather than in aerosol size distribution. Correspondingly, values of AAE ranged from 0.9 to 1.1, suggesting that lens-coated black carbon particles were the dominant absorber in the visible range for these biomass burning aerosols. Comparison with the literature shows a consistent picture of increasing absorption enhancement of biomass burning aerosol from emission to remote location and underscores that the evolution of SSA occurred a long time after emission. The results presented here build a fundamental basis of knowledge about the aerosol optical properties observed over SWA during the monsoon season and can be used in climate modelling studies and satellite retrievals. In particular and regarding the very high absorbing properties of biomass burning aerosols over SWA, our findings suggest that considering the effect of internal mixing on absorption properties of black carbon particles in climate models should help better assess the direct and semi-direct radiative effects of biomass burning particles.


2016 ◽  
Vol 16 (15) ◽  
pp. 9863-9873 ◽  
Author(s):  
Xiaole Pan ◽  
Itsushi Uno ◽  
Yukari Hara ◽  
Kazuo Osada ◽  
Shigekazu Yamamoto ◽  
...  

Abstract. Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21–0.23) and winter (0.19–0.23), and a minimum value (0.09–0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp  <  2.5 µm) and coarse mode (2.5 µm  <  Dp  <  10 µm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR  =  0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp  >  1 µm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.


2019 ◽  
Author(s):  
Cyrielle Denjean ◽  
Thierry Bourrianne ◽  
Frederic Burnet ◽  
Marc Mallet ◽  
Nicolas Maury ◽  
...  

Abstract. Southern West Africa (SWA) is an African pollution hotspot but a relatively poorly sampled region of the world. We present an overview of in-situ aerosol optical measurements collected over SWA in June and July 2016 as part as the DACCIWA (Dynamics–Aerosol–Chemistry–Clouds Interactions in West Africa) airborne campaign. The aircraft sampled a wide range of air masses, including anthropogenic pollution plumes emitted from the coastal cities, long-range transported biomass burning plumes from Central and Southern Africa and dust plumes from the Sahara and Sahel region, as well as mixtures of these plumes. The specific objective of this work is to characterize the regional variability of the vertical distribution of aerosol particles and their spectral optical properties (single scattering albedo: SSA, asymmetry parameter, extinction mass efficiency, scattering Ångström exponent and absorption Ångström exponent: AAE). First findings indicate that aerosol optical properties in the planetary boundary layer were dominated by a widespread and persistent biomass burning loading from the Southern Hemisphere. Despite a strong increase of aerosol number concentration in air masses downwind of urban conglomerations, spectral SSA were comparable to the background and showed signatures of the absorption characteristics of biomass burning aerosols. In the free troposphere, moderately to strongly absorbing aerosol layers, dominated by either dust or biomass burning particles, occurred occasionally. In aerosol layers dominated by mineral dust particles, SSA varied from 0.81 to 0.92 at 550 nm depending on the variable proportion of anthropogenic pollution particles externally mixed with the dust. Biomass burning aerosol particles were significantly more light absorbing than those previously measured in other areas (e.g. Amazonia, North America) with SSA ranging from 0.71 to 0.77 at 550 nm. The variability of SSA was mainly controlled by variations in aerosol composition rather than in aerosol size distribution. Correspondingly, values of AAE ranged from 0.9 to 1.1, suggesting that lens-coated black carbon particles were the dominant absorber in the visible range for these biomass burning aerosols. Comparison with literature shows a consistent picture of increasing absorption enhancement of biomass burning aerosol from emission to remote location and underscores that the evolution of SSA occurred a long time after emission. The results presented here build a fundamental basis of knowledge about the aerosol optical properties observed over SWA during the monsoon season and can be used in climate modelling studies and satellite retrievals. In particular and regarding the very high absorbing properties of biomass burning aerosols over SWA, our findings suggest that considering the effect of internal mixing on absorption properties of black carbon particles in climate models should help better assessing the direct and semi-direct radiative effects of biomass burning particles.


2000 ◽  
Vol 57 (1) ◽  
pp. 25-33 ◽  
Author(s):  
C M Duarte ◽  
S Agustí ◽  
J Kalff

Examination of particulate light absorption and microplankton metabolism in 36 northeastern Spanish aquatic ecosystems, ranging from alpine rivers to inland saline lakes and the open Mediterranean Sea, revealed the existence of general relationships between particulate light absorption and the biomass of phytoplankton and microplankton metabolism. The particulate absorption spectra reflected a dominance of nonphotosynthetic, likely detrital, particles in rivers and a dominance of phytoplankton in coastal lagoons. There was a strong relationship between the light absorbed by phytoplankton and the chlorophyll a (Chl a) concentration of the systems, which indicated an average (±SE) Chl a specific absorption coefficient of 0.0233 ± 0.0020 m2·mg Chl a-1 for these widely diverse systems. Chl a concentration was a weaker predictor of the total particulate light absorption coefficient, pointing to an important role of nonphytoplanktonic particles in light absorption. Gross production was very closely related to the light absorption coefficient of phytoplankton, whereas community respiration was strongly correlated with the total particulate light absorption coefficient, indicating the optical signatures of sestonic particles to be reliable predictors of planktonic biomass and metabolism in aquatic ecosystems.


2005 ◽  
Vol 5 (11) ◽  
pp. 2989-3002 ◽  
Author(s):  
P. Guyon ◽  
G. P. Frank ◽  
M. Welling ◽  
D. Chand ◽  
P. Artaxo ◽  
...  

Abstract. As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14-32 cm-3 ppb-1 in most of the investigated smoke plumes. Particle number emission ratios have to our knowledge not been previously measured in tropical deforestation fires, but our results are in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependent on the fire conditions (combustion efficiency). Variability in ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2), which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, reflecting the fact that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF) for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC) fraction of emissions that are not sampled by the aircraft, which increased the EF by a factor of 1.5-2.1. Vertical transport of smoke from the boundary layer (BL) to the cloud detrainment layer (CDL) and the free troposphere (FT) was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol particles released in the CDL and FT were larger than in the unprocessed smoke, mostly due to coagulation and secondary growth, and therefore more efficient at scattering radiation and nucleating cloud droplets. This process may have significant atmospheric implications on a regional and larger scale.


Sign in / Sign up

Export Citation Format

Share Document