scholarly journals Measurement of Electron Density from Stark-Broadened Spectral Lines Appearing in Silver Nanomaterial Plasma

Atoms ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 44 ◽  
Author(s):  
Ashraf EL Sherbini ◽  
Ahmed EL Sherbini ◽  
Christian Parigger

This work communicates results from optical emission spectroscopy following laser-induced optical breakdown at or near nanomaterial. Selected atomic lines of silver are evaluated for a consistent determination of electron density. Comparisons are presented with Balmer series hydrogen results. Measurements free of self-absorption effects are of particular interest. For several silver lines, asymmetries are observed in the recorded line profiles. Electron densities of interest range from 0.5 to 3 × 1017 cm−3 for five nanosecond Q-switched Nd:YAG radiation at wavelengths of 1064 nm, 532 nm, and 355 nm and for selected silver emission lines including 328.06 nm, 338.28 nm, 768.7 nm, and 827.3 nm and the hydrogen alpha Balmer series line at 656.3 nm. Line asymmetries are presented for the 328.06-nm and 338.28-nm Ag I lines that are measured following generation of the plasma due to multiple photon absorption. This work explores electron density variations for different irradiance levels and reports spectral line asymmetry of resonance lines for different laser fluence levels.

Author(s):  
Ashraf M. EL Sherbini ◽  
Ahmed E. EL Sherbini ◽  
Christian G. Parigger

This work communicates results from optical emission spectroscopy following laser-induced optical breakdown at or near nanomaterial. Selected atomic lines of silver are evaluated for consistent determination of electron density. Comparisons are presented with Balmer series hydrogen results. Of particular interest are measurements free of self-absorption effects. For several silver lines, asymmetries are observed in the recorded line profiles. Electron densities of interest range from 0.5 to 3 × 1017 cm-3, for 5 nanosecond Q-switched Nd:YAG radiation at wavelengths of 1064, 532, and 355 nm, and for selected silver emission lines including 328.0, 338.2, 768.7, and 827.3 nm, and the hydrogen alpha Balmer series line at 656.3 nm. Line asymmetries are presented for the 328.0 nm Ag I line that is measured following generation of the plasma due to multiple photon absorption. This work explores electron density variations for different irradiance levels, and reports spectral line asymmetry of resonance lines for different laser fluence levels.


Author(s):  
Christian G Parigger ◽  
Kyle A. Drake ◽  
Christopher M Helstern ◽  
Ghaneshwar Gautam

This work communicates a review on Balmer series hydrogen beta line measurements and applications for analysis of white dwarf stars. Laser-induced plasma investigations explore electron density and temperature ranges comparable to white dwarf star signatures such as Sirius B, the companion to the brightest star observable from the earth. Spectral line shape characteristics of the hydrogen beta line include width, peak separation, and central dip-shift, thereby providing three indicators for electron density measurements. The hydrogen alpha line shows two primary line-profile parameters for electron density determination, namely, width and shift. Both Boltzmann plot and line-to-continuum ratios yield temperature. The line-shifts recorded with temporally- and spatially- resolved optical emission spectroscopy of hydrogen plasma in laboratory settings can be larger than gravitational redshifts that occur in absorption spectra from radiating white dwarfs. Published astrophysical spectra display significantly diminished Stark or pressure broadening contributions to red-shifted atomic lines. Gravitational redshifts allow one to assess the ratio of mass and radius of these stars, and subsequently, the mass from cooling models.


2021 ◽  
pp. 171-175
Author(s):  
A. Murmantsev ◽  
A. Veklich ◽  
V. Boretskij

This work is devoted to spectroscopy peculiarities of electric arc discharge plasma with iron vapours. The solution of the main issue of optical emission spectroscopy, namely, selection of iron spectral lines, to study the parameters of non-uniform and non-steady-state plasma source, was considered within this paper. Specifically, the Boltzmann plots technique was used for detailed analysing of application possibility of Fe I spectral lines as well as for determination of plasma temperature. The spatial profiles of selected spectral line emission intensities were used to measure the radial distributions of plasma temperature of free-burning arc discharge between consumable electrodes at 3.5 A.


2020 ◽  
Vol 12 (20) ◽  
pp. 2638-2644 ◽  
Author(s):  
Alexandre Müller ◽  
Dirce Pozebon ◽  
Anderson Schwingel Ribeiro

Microwave-induced plasma optical emission spectrometry (MIP OES) allowed the determination of 19 elements in a complex sample matrix. Spectral lines and sample preparation procedures were investigated.


1972 ◽  
Vol 14 ◽  
pp. 824-824
Author(s):  
Z. Švestka ◽  
L.D. De Feiter

While the merging of the higher lines of the Balmer series emitted by solar flares is solely determined by the electron density, the merging of the high Lyman lines is determined both by the electron density, through Stark broadening of the line absorption coefficient, and by the total number of hydrogen atoms in the flare, through the effect of self-absorption. Preliminary results of model calculations indicate that two or more intensity measurements, each midway between two consecutive lines of the Lyman series (lines 3–4, 4–5, 5–6) allow the determination of the column density of hydrogen atoms in the ground state provided that the electron density is known. One can believe that in between the Lyman lines only the flare elements contribute to the measured intensity since excited interflare matter of much lower electron density produces line profiles of substantially smaller width. Thus the data in between the lines can be reasonably compared to the Ne values deduced from high members of the Balmer series.


2021 ◽  
Vol 103 (3) ◽  
pp. 35-44
Author(s):  
А.А. Mutalip ◽  
◽  
Y.А. Ussenov ◽  
А.K. Akildinova ◽  
М.K. Dosbolayev ◽  
...  

In this paper, the experimental determination of the reduced electric field (E/n) in plasma of dielectric coplanar surface barrier discharge (DCSBD) at atmospheric pressure was demonstrated. The plasma characteristics and the experimental setup properties were described, and the optical emission spectrum of the plasma was also measured. The results of optical emission spectroscopy showed the presence of nitrogen molecular bands in the emission spectrum of DCSBD. In particular, the second positive and the first negative systems, as well as low intensity OH and NO lines were identified. The main transport properties of electrons, such as mobility, mean average energy, and diffusion coefficients were calculated using the BOLSIG+ open source software. The dependence of the ratio of intensities of the nitrogen spectral lines on the reduced electric field, the dependence of the E/n on plasma power, and the dependence of the electron energy distribution function (EEDF) on E/n were obtained. An algorithm in the form of a block diagram for determining the reduced electric field by the BOLSIG + program and experimentally measured spectral line intensities are presented. The utilized method is quite simple, accessible and versatile.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2642
Author(s):  
Simion Bogdan Angyus ◽  
Erika Levei ◽  
Dorin Petreus ◽  
Radu Etz ◽  
Eniko Covaci ◽  
...  

The simultaneous determination of chemical vapor-generating elements involving derivatization is difficult even by inductively coupled plasma optical emission spectrometry or mass spectrometry. This study proposes a new direct liquid microsampling method for the simultaneous determination of As, Bi, Se, Te, Hg, Pb, and Sn, using a fully miniaturized set-up based on electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry. The method is cost-effective, free from non-spectral interference, and easy to run by avoiding derivatization. The method involves the vaporization of analytes from the 10 µL sample and recording of episodic spectra generated in low-power (15 W) and low-Ar consumption (150 mL min−1) plasma microtorch interfaced with low-resolution microspectrometers. Selective vaporization at 1300 °C ensured the avoidance of non-spectral effects and allowed the use of external calibration. Several spectral lines for each element even in the range 180–210 nm could be selected. Generally, this spectral range is examined with large-scale instrumentation. Even in the absence of derivatization, the obtained detection limits were low (0.02–0.75 mg kg−1) and allowed analysis of environmental samples, such as cave and river sediments. The recovery was in the range of 86–116%, and the accuracy was better than 10%. The method is of general interest and could be implemented on any miniaturized or classical laboratory spectrometric instrumentation.


Sign in / Sign up

Export Citation Format

Share Document