scholarly journals GPU Based Modelling and Analysis for Parallel Fractional Order Derivative Model of the Spiral-Plate Heat Exchanger

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 344
Author(s):  
Guanqiang Dong ◽  
Mingcong Deng

Heat exchangers are commonly used in various industries. A spiral-plate heat exchanger with two fluids is a compact plant that only requires a small space and is excellent in high heat transfer efficiency. However, the spiral-plate heat exchanger is a nonlinear plant with uncertainties, considering the difference between the heat fluid, the heated fluid, and other complex factors. The fractional order derivation model is more accurate than the traditional integer order model. In this paper, a parallel fractional order derivation model is proposed by considering the merit of the graphics processing unit (GPU). Then, the parallel fractional order derivation model for the spiral-plate heat exchanger is constructed. Simulations show the relationships between the output temperature of heated fluid and the orders of fractional order derivatives with two directional fluids impacted by complex factors, namely, the volume flow rate in hot fluid, and the volume flow rate in cold fluid, respectively.

2008 ◽  
Vol 12 (3) ◽  
pp. 85-90 ◽  
Author(s):  
Rangasamy Rajavel ◽  
Kaliannagounder Saravanan

In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid) is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid) varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.


Author(s):  
Louis C. Burmeister

A formula is derived for the dependence of heat exchanger effectiveness on the number of transfer units for a spiral-plate heat exchanger with equal capacitance rates. The difference-differential equations that describe the temperature distributions of the two counter-flowing fluids, neglecting thermal radiation, are solved symbolically to close approximation. Provision is made for offset inlet and exit of the hot and cold fluids at the outer periphery and for large heat transfer coefficients in entrance regions. The peak effectiveness and the number of transfer units at which it occurs are predicted.


1999 ◽  
Vol 121 (1) ◽  
pp. 14-19 ◽  
Author(s):  
R. Z. Wang ◽  
J. Y. Wu ◽  
Y. X. Xu

Spiral plate heat exchangers as adsorbers have been proposed, and a prototype heat regenerative adsorption refrigerator using activated carbon-methanol pair has been developed and tested. Various improvements have been made, at last we get a specific cooling power for 2.6 kg-ice/day-kg adsorbent at the condition of generation temperature lower than 100°C. Discussions on the arrangements of thermal cycles and influences of design are shown.


2014 ◽  
Vol 18 (4) ◽  
pp. 1355-1360 ◽  
Author(s):  
Rajavel Rangasamy

An experimental and numerical study of heat transfer and flow characteristics of spiral plate heat exchanger was carried out. The effects of geometrical aspects of the spiral plate heat exchanger and fluid properties on the heat transfer characteristics were also studied. Three spiral plate heat exchangers with different plate spacing (4mm, 5mm and 6 mm) were designed, fabricated and tested. Physical models have been experimented for different process fluids and flow conditions. Water is taken as test fluid. The effect of mass flow rate and Reynolds number on heat transfer coefficient has been studied. Correlation has been developed to predict Nusselt numbers. Numerical models have been simulated using CFD software package FLUENT 6.3.26. The numerical Nusselt number have been calculated and compared with that of experimental Nusselt number.


2005 ◽  
Vol 128 (3) ◽  
pp. 295-301 ◽  
Author(s):  
Louis C. Burmeister

Abstract A formula is derived for the dependence of heat exchanger effectiveness on the number of transfer units for a spiral-plate heat exchanger with equal capacitance rates. The difference-differential equations that describe the temperature distributions of the two counter-flowing fluids, neglecting the effects of thermal radiation, are solved symbolically to close approximation. Provision is made for the offset inlet and exit of the hot and cold fluids at the outer periphery and for large heat transfer coefficients in the entrance regions. The peak effectiveness and the number of transfer units at which it occurs are linear functions of the maximum angle of the Archimedean spiral that describes the ducts; entrance region effects reduce both.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8280
Author(s):  
Jeonggyun Ham ◽  
Gonghee Lee ◽  
Dong-wook Oh ◽  
Honghyun Cho

In this study, computational fluid dynamics (CFD) analysis was performed to investigate the cause of the thermal stratification in the channel and the temperature non-uniformity of the plate heat exchanger. The flow velocity maldistribution of the channel and the merging parts caused temperature non-uniformity in the channel width direction. The non-uniformity of flow velocity and temperature in the channel is shown in Section 1 > Section 3 > Section 2 from the heat exchanger. The non-uniform temperature distribution in the channel caused channel stratification and non-uniform outlet temperature. Stratification occurred at the channel near the merging due to the flow rate non-uniformity in the channel. In particular, as the mass flow rate increased from 0.03 to 0.12 kg/s and the effectiveness increased from 0.436 to 0.615, the cold-side stratified volume decreased from 4.06 to 3.7 cm3, and the temperature difference between the stratified area and the outlet decreased from 1.21 K to 0.61 K. The increase in mass flow and the decrease in temperature difference between the cold and hot sides alleviated the non-uniformity of the outlet temperature due to the increase in effectiveness. Besides, as the inlet temperature difference between the cold and the hot side increases, the temperature non-uniformity at the outlet port is poor due to the increase in the stratified region at the channel, and the distance to obtain a uniform temperature in the outlet pipe increases as the temperature at the hot side increases.


Author(s):  
Y. Elistratova ◽  
A. Seminenko ◽  
V. Minko ◽  
R. Ramazanov

The relevance of the work of information and diagnostic systems in the field of monitoring of plate heat exchange equipment is considered. The reliability of the monitoring devices requires an accurate mathematical description of the thermo hydrodynamic processes in the heat exchange channels. The classical description of these processes implies a uniform distribution of the flow rate of the working medium along the length of the plate package, which in turn implies equal conditions for the formation of salt deposition products on the heating surfaces of the plate heat exchanger. The use of dependencies that take into account the equality of costs for a package of plates reduces the reliability of diagnostics of the efficiency of hot water devices of the plate type. Since the geometric space formed by the plates is represented by parallel channels connected by sections of transit collectors, the method of resistance characteristics is proposed as a method of hydraulic calculation of the distribution features of liquid flows through heat exchange channels. The dependence of the design features of the location of the interplate channels relative to the input of the coolant into the distribution manifold is revealed. It is found that, the flow rate of the circulating coolant is less in the channels most remote from the inlet pipe than in the nearest channels. The hypothesis of the influence of the relative position of the channels in relation to the inlet pipe is confirmed by numerical studies of the hydrodynamic regime of the plate heat exchanger.


Author(s):  
Meisam Ghodrati ◽  
Jamshid Khorshidi

A system of a spiral plate heat exchanger and its required auxiliaries was built. The pitches of heat exchanger were built differently to provide almost two geometrically different heat exchangers in a single package. Several experiments were done and working parameters of the heat exchanger were measured. A code was written to find a new optimised correlation that could approximate the Nusselt Number based on the obtained experimental data from 51 reliable experiments. As an advantage, that correlation was valid for low Reynolds Numbers. Also, in most of previous works, the correlation for Nusselt Number in one side of the heat exchanger was supposed to be known and the correlation for the other side was determined. But, in this study, the equation was found using calculations for both sides simultaneously. The overal heat transfer coefficient calculated from the proposed correlation, made an average error of 3.65% to the experimental data. A complete uncertainty analysis was done and revealed that the results from the new correlation for the Nusselt Number lies between [Formula: see text] around the real Nusselt Number.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shiva Singh ◽  
Piyush Verma ◽  
Subrata Kumar Ghosh

Purpose This study aims to present the experimental and computational performance analysis in compact plate heat exchanger (PHE) using graphene oxide nanofluids at different concentrations and flow rate. Design/methodology/approach Field emission scanning electron microscope and X-ray diffraction were used to characterize graphene oxide nanoparticles. The nanofluid samples were prepared by varying volume concentration. Zeta potential test was done to check stability of samples. The thermophysical properties of samples have been experimentally measured. The experimental setup of PHE with 60° chevron angle has also been developed. The numerical analysis is done using computational fluid dynamics (CFD) model having similar geometry as of the actual plate. Distilled water at fixed temperature and flow rate is used in hot side tank. Nanofluid at fixed temperature with varying concentration and flow rate is used in cold side tank as coolant. Findings The numerical and experimental results were compared and found that both results were in good agreement. The results showed ∼13% improvement in thermal conductivity, ∼14% heat transfer rate (HTR), ∼9% in effectiveness and ∼10% in overall heat transfer coefficient at cost of pressure drop and pumping power using nanofluid. Exergy loss also decreased using nanofluid at optimum concentration of 1 Vol.%. Originality/value The CFD model can be significant to analyze temperature, pressure and flow distribution in heat exchanger which is impossible otherwise. This study gives ease to predict PHE performance with high accuracy without performing the experiment.


Sign in / Sign up

Export Citation Format

Share Document