scholarly journals Development of EST-Molecular Markers from RNA Sequencing for Genetic Management and Identification of Growth Traits in Potato Grouper (Epinephelus tukula)

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Te-Hua Hsu ◽  
Yu-Ting Chiu ◽  
Hung-Tai Lee ◽  
Hong-Yi Gong ◽  
Chang-Wen Huang

The accuracy and efficiency of marker-assisted selection (MAS) has been proven for economically critical aquaculture species. The potato grouper (Epinephelus tukula), a novel cultured grouper species in Taiwan, shows large potential in aquaculture because of its fast growth rate among other groupers. Because of the lack of genetic information for the potato grouper, the first transcriptome and expressed sequence tag (EST)-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were developed. Initially, the transcriptome was obtained from seven cDNA libraries by using the Illumina platform. De novo transcriptome of the potato grouper yielded 51.34 Gb and 111,490 unigenes. The EST-derived SSR and SNP markers were applied in genetic management, in parentage analysis, and to discover the functional markers of economic traits. The F1 juveniles were identified as siblings from one pair of parents (80 broodstocks). Fast- and slow-growth individuals were analyzed using functional molecular markers and through their association with growth performance. The results revealed that two SNPs were correlated with growth traits. The transcriptome database obtained in this study and its derived SSR and SNP markers may be applied not only for MAS but also to maintain functional gene diversity in the novel cultured grouper.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Wenlan Tian ◽  
Dev Paudel ◽  
Wagner Vendrame ◽  
Jianping Wang

Jatropha (Jatropha curcasL.) is an economically important species with a great potential for biodiesel production. To enrich the jatropha genomic databases and resources for microgravity studies, we sequenced and annotated the transcriptome of jatropha and developed SSR and SNP markers from the transcriptome sequences. In total 1,714,433 raw reads with an average length of 441.2 nucleotides were generated. De novo assembling and clustering resulted in 115,611 uniquely assembled sequences (UASs) including 21,418 full-length cDNAs and 23,264 new jatropha transcript sequences. The whole set of UASs were fully annotated, out of which 59,903 (51.81%) were assigned with gene ontology (GO) term, 12,584 (10.88%) had orthologs in Eukaryotic Orthologous Groups (KOG), and 8,822 (7.63%) were mapped to 317 pathways in six different categories in Kyoto Encyclopedia of Genes and Genome (KEGG) database, and it contained 3,588 putative transcription factors. From the UASs, 9,798 SSRs were discovered with AG/CT as the most frequent (45.8%) SSR motif type. Further 38,693 SNPs were detected and 7,584 remained after filtering. This UAS set has enriched the current jatropha genomic databases and provided a large number of genetic markers, which can facilitate jatropha genetic improvement and many other genetic and biological studies.


2010 ◽  
Vol 59 (1-6) ◽  
pp. 257-263 ◽  
Author(s):  
H. Schroeder ◽  
M. Fladung

Abstract Several poplar species within a section, but also between sections, are cross-compatible, thus a high number of interspecies-hybrids occur naturally or have been artificially produced during the last 100 years. Very often, systematically kept records on the production or vegetative propagation of poplar hybrids and/or clones have not been available to date. Hence the origin of the poplar plant material used for the generation of hybrids or clones is not quite clear in many cases, thus making the differentiation between the clones a difficult task. Therefore, genetic markers are needed to clearly identify and differentiate the species and hybrids in the genus Populus, including both identification of existing clones and the breeding of new ones. One aspect of this study is therefore to develop molecular markers for the identification and differentiation of species, hybrids, and clones of the genus Populus.


1999 ◽  
Vol 9 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Leslie Picoult-Newberg ◽  
Trey E. Ideker ◽  
Mark G. Pohl ◽  
Scott L. Taylor ◽  
Miriam A. Donaldson ◽  
...  

There is considerable interest in the discovery and characterization of single nucleotide polymorphisms (SNPs) to enable the analysis of the potential relationships between human genotype and phenotype. Here we present a strategy that permits the rapid discovery of SNPs from publicly available expressed sequence tag (EST) databases. From a set of ESTs derived from 19 different cDNA libraries, we assembled 300,000 distinct sequences and identified 850 mismatches from contiguous EST data sets (candidate SNP sites), without de novo sequencing. Through a polymerase-mediated, single-base, primer extension technique, Genetic Bit Analysis (GBA), we confirmed the presence of a subset of these candidate SNP sites and have estimated the allele frequencies in three human populations with different ethnic origins. Altogether, our approach provides a basis for rapid and efficient regional and genome-wide SNP discovery using data assembled from sequences from different libraries of cDNAs.[The SNPs identified in this study can be found in the National Center of Biotechnology (NCBI) SNP database under submitter handles ORCHID (SNPS-981210-A) and debnick (SNPS-981209-A and SNPS-981209-B).]


2016 ◽  
Vol 9 ◽  
pp. GEI.S40377 ◽  
Author(s):  
Pratibha Kottapalli ◽  
Mauricio Ulloa ◽  
Kameswara Rao Kottapalli ◽  
Paxton Payton ◽  
John Burke

The objective of this study was to explore the known narrow genetic diversity and discover single-nucleotide polymorphic (SNP) markers for marker-assisted breeding within Pima cotton ( Gossypium barbadense L.) leaf transcriptomes. cDNA from 25-day plants of three diverse cotton genotypes [Pima S6 (PS6), Pima S7 (PS7), and Pima 3-79 (P3-79)] was sequenced on Illumina sequencing platform. A total of 28.9 million reads (average read length of 138 bp) were generated by sequencing cDNA libraries of these three genotypes. The de novo assembly of reads generated transcriptome sets of 26,369 contigs for PS6, 25,870 contigs for PS7, and 24,796 contigs for P3-79. A Pima leaf reference transcriptome was generated consisting of 42,695 contigs. More than 10,000 single-nucleotide polymorphisms (SNPs) were identified between the genotypes, with 100% SNP frequency and a minimum of eight sequencing reads. The most prevalent SNP substitutions were C–-T and A–-G in these cotton genotypes. The putative SNPs identified can be utilized for characterizing genetic diversity, genotyping, and eventually in Pima cotton breeding through marker-assisted selection.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1375
Author(s):  
Hideyuki Ito ◽  
Nobuyoshi Nakajima ◽  
Manabu Onuma ◽  
Miho Murayama

The Tsushima leopard cat (Prionailurus bengalensis euptilurus) lives on Tsushima Island in Japan and is a regional population of the Amur leopard cat; it is threatened with extinction. Its genetic management is important because of the small population. We used genotyping by random amplicon sequencing-direct (GRAS-Di) to develop a draft genome and explore single-nucleotide polymorphism (SNP) markers. The SNPs were analyzed using three genotyping methods (mapping de novo, to the Tsushima leopard cat draft genome, and to the domestic cat genome). We examined the genetic diversity and genetic structure of the Tsushima leopard cat. The genome size was approximately 2.435 Gb. The number of SNPs identified was 133–158. The power of these markers was sufficient for individual and parentage identifications. These SNPs can provide useful information about the life of the Tsushima leopard cat and the pairings and for the introduction of founders to conserve genetic diversity with ex situ conservation. We identified that there are no subpopulations of the Tsushima leopard cat. The identifying units will allow for a concentration of efforts for conservation. SNPs can be applied to the analysis of the leopard cat in other regions, making them useful for comparisons among populations and conservation in other small populations.


3 Biotech ◽  
2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Yunsheng Wang ◽  
Muhammad Qasim Shahid ◽  
Fozia Ghouri ◽  
Sezai Ercişli ◽  
Faheem Shehzad Baloch

Genome ◽  
2006 ◽  
Vol 49 (4) ◽  
pp. 365-372 ◽  
Author(s):  
Ju-Kyung Yu ◽  
Qi Sun ◽  
Mauricio La Rota ◽  
Hugh Edwards ◽  
Hailu Tefera ◽  
...  

Tef (Eragrostis tef (Zucc.) Trotter) is the most important cereal crop in Ethiopia; however, there is very little DNA sequence information available for this species. Expressed sequence tags (ESTs) were generated from 4 cDNA libraries: seedling leaf, seedling root, and inflorescence of E. tef and seedling leaf of Eragrostis pilosa, a wild relative of E. tef. Clustering of 3603 sequences produced 530 clusters and 1890 singletons, resulting in 2420 tef unigenes. Ap prox imately 3/4 of tef unigenes matched protein or nucleotide sequences in public databases. Annotation of unigenes associated 68% of the putative tef genes with gene ontology categories. Identification of the translated unigenes for conserved protein domains revealed 389 protein family domains (Pfam), the most frequent of which was protein kinase. A total of 170 ESTs containing simple sequence repeats (EST-SSRs) were identified and 80 EST-SSR markers were developed. In addition, 19 single-nucleotide polymorphism (SNP) and (or) insertion–deletion (indel) and 34 intron frag ment length polymorphism (IFLP) markers were developed. The EST database and molecular markers generated in this study will be valuable resources for further tef genetic research.Key words: tef, Ethiopian cereal crop, EST, molecular markers.


2014 ◽  
Vol 12 (S1) ◽  
pp. S83-S86 ◽  
Author(s):  
Yul-Kyun Ahn ◽  
Swati Tripathi ◽  
Young-Il Cho ◽  
Jeong-Ho Kim ◽  
Hye-Eun Lee ◽  
...  

Next-generation sequencing technique has been known as a useful tool for de novo transcriptome assembly, functional annotation of genes and identification of molecular markers. This study was carried out to mine molecular markers from de novo assembled transcriptomes of four chilli pepper varieties, the highly pungent ‘Saengryeg 211’ and non-pungent ‘Saengryeg 213’ and variably pigmented ‘Mandarin’ and ‘Blackcluster’. Pyrosequencing of the complementary DNA library resulted in 361,671, 274,269, 279,221, and 316,357 raw reads, which were assembled in 23,607, 19,894, 18,340 and 20,357 contigs, for the four varieties, respectively. Detailed sequence variant analysis identified numerous potential single-nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) for all the varieties for which the primers were designed. The transcriptome information and SNP/SSR markers generated in this study provide valuable resources for high-density molecular genetic mapping in chilli pepper and Quantitative trait loci analysis related to fruit qualities. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies.


Genome ◽  
2010 ◽  
Vol 53 (11) ◽  
pp. 948-956 ◽  
Author(s):  
G. Durstewitz ◽  
A. Polley ◽  
J. Plieske ◽  
H. Luerssen ◽  
E. M. Graner ◽  
...  

Oilseed rape ( Brassica napus ) is an allotetraploid species consisting of two genomes, derived from B. rapa (A genome) and B. oleracea (C genome). The presence of these two genomes makes single nucleotide polymorphism (SNP) marker identification and SNP analysis more challenging than in diploid species, as for a given locus usually two versions of a DNA sequence (based on the two ancestral genomes) have to be analyzed simultaneously during SNP identification and analysis. One hundred amplicons derived from expressed sequence tag (ESTs) were analyzed to identify SNPs in a panel of oilseed rape varieties and within two sister species representing the ancestral genomes. A total of 604 SNPs were identified, averaging one SNP in every 42 bp. It was possible to clearly discriminate SNPs that are polymorphic between different plant varieties from SNPs differentiating the two ancestral genomes. To validate the identified SNPs for their use in genetic analysis, we have developed Illumina GoldenGate assays for some of the identified SNPs. Through the analysis of a number of oilseed rape varieties and mapping populations with GoldenGate assays, we were able to identify a number of different segregation patterns in allotetraploid oilseed rape. The majority of the identified SNP markers can be readily used for genetic mapping, showing that amplicon sequencing and Illumina GoldenGate assays can be used to reliably identify SNP markers in tetraploid oilseed rape and to convert them into successful SNP assays that can be used for genetic analysis.


Reproduction ◽  
2006 ◽  
Vol 132 (2) ◽  
pp. 319-331 ◽  
Author(s):  
Stefan Bauersachs ◽  
Susanne E Ulbrich ◽  
Karin Gross ◽  
Susanne E M Schmidt ◽  
Heinrich H D Meyer ◽  
...  

The endometrium plays a central role among the reproductive tissues in the context of early embryo–maternal communication and pregnancy. This study investigated transcriptome profiles of endometrium samples from day 18 pregnant vs non-pregnant heifers to get insight into the molecular mechanisms involved in conditioning the endometrium for embryo attachment and implantation. Using a combination of subtracted cDNA libraries and cDNA array hybridisation, 109 mRNAs with at least twofold higher abundance in endometrium of pregnant animals and 70 mRNAs with higher levels in the control group were identified. Among the mRNAs with higher abundance in pregnant animals, at least 41 are already described as induced by interferons. In addition, transcript levels of many new candidate genes involved in the regulation of transcription, cell adhesion, modulation of the maternal immune system and endometrial remodelling were found to be increased. The different expression level was confirmed with real-time PCR for nine genes. Localisation of mRNA expression in the endometrium was shown byin situhybridisation forAGRN,LGALS3BP,LGALS9,USP18,PARP12andBST2. A comparison with similar studies in humans, mice, and revealed species-specific and common molecular markers of uterine receptivity.


Sign in / Sign up

Export Citation Format

Share Document