scholarly journals Pathogenic D76N Variant of β2-Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1197
Author(s):  
Éva Bulyáki ◽  
Judit Kun ◽  
Tamás Molnár ◽  
Alexandra Papp ◽  
András Micsonai ◽  
...  

β2-microglobulin (β2m), the light chain of the MHC-I complex, is associated with dialysis-related amyloidosis (DRA). Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m variant, which showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Here, we investigated the role of the D76N mutation in the amyloid formation of β2m by point mutations affecting the Asp76-Lys41 ion-pair of WT β2m and the charge cluster on Asp38. Using a variety of biophysical techniques, we investigated the conformational stability and partial unfolding of the native state of the variants, as well as their amyloidogenic propensity and the stability of amyloid fibrils under various conditions. Furthermore, we studied the intermolecular interactions of WT and mutant proteins with various binding partners that might have in vivo relevance. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the deleterious synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules (e.g., lipids) and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular components, including extracellular matrix proteins.

2008 ◽  
Vol 416 (2) ◽  
pp. 307-315 ◽  
Author(s):  
Kazuhiro Hasegawa ◽  
Shinobu Tsutsumi-Yasuhara ◽  
Tadakazu Ookoshi ◽  
Yumiko Ohhashi ◽  
Hideki Kimura ◽  
...  

Aβ2M (β2-microglobulin-related) amyloidosis is a frequent and serious complication in patients on long-term dialysis. Partial unfolding of β2-m (β2-microglobulin) may be essential to its assembly into Aβ2M amyloid fibrils in vivo. Although SDS around the critical micelle concentration induces partial unfolding of β2-m to an α-helix-containing aggregation-prone amyloidogenic conformer and subsequent amyloid fibril formation in vitro, the biological molecules with similar activity under near-physiological conditions are still unknown. The effect of various NEFAs (non-esterified fatty acids), which are representative anionic amphipathic compounds in the circulation, on the growth of Aβ2M amyloid fibrils at a neutral pH was examined using fluorescence spectroscopy with thioflavin T, CD spectroscopy, and electron microscopy. Physiologically relevant concentrations of laurate, myristate, oleate, linoleate, and mixtures of palmitate, stearate, oleate and linoleate, induced the growth of fibrils at a neutral pH by partially unfolding the compact structure of β2-m to an aggregation-prone amyloidogenic conformer. In the presence of human serum albumin, these NEFAs also induced the growth of fibrils when their concentrations exceeded the binding capacity of albumin, indicating that the unbound NEFAs rather than albumin-bound NEFAs induce the fibril growth reaction in vitro. These results suggest the involvement of NEFAs in the development of Aβ2M amyloidosis, and in the pathogenesis of Aβ2M amyloidosis.


Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1112-1124 ◽  
Author(s):  
Yong Ge ◽  
Xiaomin Hu ◽  
Ni Zhao ◽  
Tingyu Shi ◽  
Quanxin Cai ◽  
...  

pBsph is a mosquitocidal plasmid first identified from Bacillus sphaericus, encoding binary toxins (Bin toxins) that are highly toxic to mosquito larvae. This plasmid plays an important role in the maintenance and evolution of the bin genes in B. sphaericus. However, little is known about its replication and partitioning. Here, we identified a 2.4 kb minimal replicon of pBsph plasmid that contained an operon encoding TubR-Bs and TubZ-Bs, each of which was shown to be required for plasmid replication. TubR-Bs was shown to be a transcriptional repressor of tubRZ-Bs genes and could bind cooperatively to the replication origin of eleven 12 bp degenerate repeats in three blocks, and this binding was essential for plasmid replication. TubZ-Bs exhibited GTPase activities and interacted with TubR-Bs : DNA complex to form a ternary nucleoprotein apparatus. Electron and fluorescence microscopy revealed that TubZ-Bs assembled filaments both in vitro and in vivo, and two point mutations in TubZ-Bs (T114A and Y260A) that severely impaired the GTPase and polymerization activities were found to be defective for plasmid maintenance. Further investigation demonstrated that overproduction of TubZ-Bs-GFP or its mutant forms significantly reduced the stability of pBsph. Taken together, these results suggested that TubR-Bs and TubZ-Bs are involved in the replication and probably in the partitioning of pBsph plasmid, increasing our understanding of the genetic particularity of TubZ systems.


2021 ◽  
Vol 15 (1) ◽  
pp. e0009007
Author(s):  
Fábio Mambelli ◽  
Bruno P. O. Santos ◽  
Suellen B. Morais ◽  
Enrico G. T. Gimenez ◽  
Duana C. dos S. Astoni ◽  
...  

The Schistosoma mansoni SmKI-1 protein is composed of two domains: a Kunitz-type serine protease inhibitor motif (KD) and a C-terminus domain with no similarity outside the genera. Our previous work has demonstrated that KD plays an essential role in neutrophil elastase (NE) binding blockage, in neutrophil influx and as a potential anti-inflammatory molecule. In order to enhance NE blocking capacity, we analyzed the KD sequence from a structure-function point of view and designed specific point mutations in order to enhance NE affinity. We substituted the P1 site residue at the reactive site for a leucine (termed RL-KD), given its central role for KD’s inhibition to NE. We have also substituted a glutamic acid that strongly interacts with the P1 residue for an alanine, to help KD to be buried on NE S1 site (termed EA-KD). KD and the mutant proteins were evaluated in silico by molecular docking to human NE, expressed in Escherichia coli and tested towards its NE inhibitory activity. Both mutated proteins presented enhanced NE inhibitory activity in vitro and RL-KD presented the best performance. We further tested RL-KD in vivo in an experimental model of monosodium urate (MSU)-induced acute arthritis. RL-KD showed reduced numbers of total cells and neutrophils in the mouse knee cavity when compared to KD. Nevertheless, both RL-KD and KD reduced mice hypernociception in a similar fashion. In summary, our results demonstrated that both mutated proteins showed enhanced NE inhibitory activity in vitro. However, RL-KD had a prominent effect in diminishing inflammatory parameters in vivo.


1989 ◽  
Vol 9 (12) ◽  
pp. 5643-5649
Author(s):  
H Ma ◽  
L M Bloom ◽  
C T Walsh ◽  
D Botstein

Saccharomyces cerevisiae mutants containing different point mutations in the HXK2 gene were used to study the relationship between phosphorylation by hexokinase II and glucose repression in yeast cells. Mutants showing different levels of hexokinase activity were examined for the degree of glucose repression as indicated by the levels of invertase activity. The levels of hexokinase activity and invertase activity showed a strong inverse correlation, with a few exceptions attributable to very unstable hexokinase II proteins. The in vivo hexokinase II activity was determined by measuring growth rates, using fructose as a carbon source. This in vivo hexokinase II activity was similarly inversely correlated with invertase activity. Several hxk2 alleles were transferred to multicopy plasmids to study the effects of increasing the amounts of mutant proteins. The cells that contained the multicopy plasmids exhibited less invertase and more hexokinase activity, further strengthening the correlation. These results strongly support the hypothesis that the phosphorylation activity of hexokinase II is correlated with glucose repression.


2020 ◽  
Vol 295 (33) ◽  
pp. 11379-11387 ◽  
Author(s):  
Sara Raimondi ◽  
P. Patrizia Mangione ◽  
Guglielmo Verona ◽  
Diana Canetti ◽  
Paola Nocerino ◽  
...  

Systemic amyloidosis caused by extracellular deposition of insoluble fibrils derived from the pathological aggregation of circulating proteins, such as transthyretin, is a severe and usually fatal condition. Elucidation of the molecular pathogenic mechanism of the disease and discovery of effective therapies still represents a challenging medical issue. The in vitro preparation of amyloid fibrils that exhibit structural and biochemical properties closely similar to those of natural fibrils is central to improving our understanding of the biophysical basis of amyloid formation in vivo and may offer an important tool for drug discovery. Here, we compared the morphology and thermodynamic stability of natural transthyretin fibrils with those of fibrils generated in vitro either using the common acidification procedure or primed by limited selective cleavage by plasmin. The free energies for fibril formation were −12.36, −8.10, and −10.61 kcal mol−1, respectively. The fibrils generated via plasmin cleavage were more stable than those prepared at low pH and were thermodynamically and morphologically similar to natural fibrils extracted from human amyloidotic tissue. Determination of thermodynamic stability is an important tool that is complementary to other methods of structural comparison between ex vivo fibrils and fibrils generated in vitro. Our finding that fibrils created via an in vitro amyloidogenic pathway are structurally similar to ex vivo human amyloid fibrils does not necessarily establish that the fibrillogenic pathway is the same for both, but it narrows the current knowledge gap between in vitro models and in vivo pathophysiology.


2012 ◽  
Vol 287 (15) ◽  
pp. 11842-11849 ◽  
Author(s):  
Joanna S. Olsen ◽  
John T. M. DiMaio ◽  
Todd M. Doran ◽  
Caitlin Brown ◽  
Bradley L. Nilsson ◽  
...  

Amyloid fibrils contained in semen, known as SEVI, or semen-derived enhancer of viral infection, have been shown to increase the infectivity of HIV dramatically. However, previous work with these fibrils has suggested that extensive time and nonphysiologic levels of agitation are necessary to induce amyloid formation from the precursor peptide (a proteolytic cleavage product of prostatic acid phosphatase, PAP248–286). Here, we show that fibril formation by PAP248–286is accelerated dramatically in the presence of seminal plasma (SP) and that agitation is not required for fibrillization in this setting. Analysis of the effects of specific SP components on fibril formation by PAP248–286revealed that this effect is primarily due to the anionic buffer components of SP (notably inorganic phosphate and sodium bicarbonate). Divalent cations present in SP had little effect on the kinetics of fibril formation, but physiologic levels of Zn2+strongly protected SEVI fibrils from degradation by seminal proteases. Taken together, these data suggest that in thein vivoenvironment, PAP248–286is likely to form fibrils efficiently, thus providing an explanation for the presence of SEVI in human semen.


2000 ◽  
Vol 348 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Clara REDONDO ◽  
Ana M. DAMAS ◽  
Maria João M. SARAIVA

The molecular mechanisms that convert soluble transthyretin (TTR) tetramers into insoluble amyloid fibrils are still unknown; dissociation of the TTR tetramer is a pre-requisite for amyloid formation in vitro and involvement of monomers and/or dimers in fibril formation has been suggested by structural studies. We have designed four mutated proteins with the purpose of stabilizing [Ser117 → Cys (S117C) and Glu92 → Cys (E92C)] or destabilizing [Asp18 → Asn (D18N) and Leu110 → Ala (D110A)] the dimer/tetramer interactions in TTR, aiming at elucidating structural determinants in amyloidogenesis. The resistance of the mutated proteins to dissociation was analysed by HPLC studies of diluted TTR preparations. Both ‘stabilized’ mutants migrated as tetramers and, upon dilution, no other TTR species was observed, confirming the increased resistance to dissociation. For the ‘destabilized’ mutants, a mixture of tetrameric and monomeric forms co-existed at low dilution and the latter increased upon 10-fold dilution. Both of the destabilizing mutants formed amyloid in vitro when acidified. This result indicated that both the AB loop of TTR, destabilized in D18N, and the hydrophobic interactions affecting the dimer-dimer interfaces in L110A are implicated in the stability of the tetrameric structure. The stabilized mutants, which were dimeric in nature through disulphide bonding, were unable to polymerize into amyloid, even at pH 3.2. When the amyloid formation assay was repeated in the presence of 2-mercaptoethanol, upon disruption of the S-S bridges of these stable dimers, amyloid fibril formation was observed. This experimental evidence suggests that monomers, rather than dimers, are the repeating structural subunit comprising the amyloid fibrils.


2018 ◽  
Vol 115 (28) ◽  
pp. E6428-E6436 ◽  
Author(s):  
Elena S. Klimtchuk ◽  
Tatiana Prokaeva ◽  
Nicholas M. Frame ◽  
Hassan A. Abdullahi ◽  
Brian Spencer ◽  
...  

Transthyretin (TTR) is a globular tetrameric transport protein in plasma. Nearly 140 single amino acid substitutions in TTR cause life-threatening amyloid disease. We report a one-of-a-kind pathological variant featuring a Glu51, Ser52 duplication mutation (Glu51_Ser52dup). The proband, heterozygous for the mutation, exhibited an unusually aggressive amyloidosis that was refractory to treatment with the small-molecule drug diflunisal. To understand the poor treatment response and expand therapeutic options, we explored the structure and stability of recombinant Glu51_Ser52dup. The duplication did not alter the protein secondary or tertiary structure but decreased the stability of the TTR monomer and tetramer. Diflunisal, which bound with near-micromolar affinity, partially restored tetramer stability. The duplication had no significant effect on the free energy and enthalpy of diflunisal binding, and hence on the drug–protein interactions. However, the duplication induced tryptic digestion of TTR at near-physiological conditions, releasing a C-terminal fragment 49–129 that formed amyloid fibrils under conditions in which the full-length protein did not. Such C-terminal fragments, along with the full-length TTR, comprise amyloid deposits in vivo. Bioinformatics and structural analyses suggested that increased disorder in the surface loop, which contains the Glu51_Ser52dup duplication, not only helped generate amyloid-forming fragments but also decreased structural protection in the amyloidogenic residue segment 25–34, promoting misfolding of the full-length protein. Our studies of a unique duplication mutation explain its diflunisal-resistant nature, identify misfolding pathways for amyloidogenic TTR variants, and provide therapeutic targets to inhibit amyloid fibril formation by variant TTR.


Author(s):  
Nicola Vettore ◽  
Alexander Buell

Amyloid fibrils are homo-molecular protein polymers that play an important role in disease and biological function. While much is known about their kinetics and mechanisms of formation, the origin and magnitude of their thermodynamic stability has received significantly less attention. This is despite the fact that the thermodynamic stability of amyloid fibrils is an important determinant of their lifetimes and processing in vivo. Here we use depolymerization by chemical denaturants of amyloid fibrils of two different proteins (PI3K-SH3 and glucagon) at different concentrations and show that the previously applied linear polymerization model is an oversimplification that does not capture the concentration dependence of chemical depolymerization of amyloid fibrils. We show that cooperative polymerization, which is compatible with the picture of amyloid formation as a nucleated polymerization process, is able to quantitatively describe the thermodynamic data. We use this combined experimental and conceptual framework in order to probe the ionic strength<br>dependence of amyloid fibril stability. In combination with previously published data on the ionic strength dependence of amyloid fibril growth kinetics, our results provide strong evidence for the product-like nature of the transition state of amyloid fibril growth.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 241
Author(s):  
Vitalii Balobanov ◽  
Rita Chertkova ◽  
Anna Egorova ◽  
Dmitry Dolgikh ◽  
Valentina Bychkova ◽  
...  

Engineering of amyloid structures is one of the new perspective areas of protein engineering. Studying the process of amyloid formation can help find ways to manage it in the interests of medicine and biotechnology. One of the promising candidates for the structural basis of artificial functional amyloid fibrils is albebetin (ABB), an artificial protein engineered under the leadership of O.B. Ptitsyn. Various aspects of the amyloid formation of this protein and some methods for controlling this process are investigated in this paper. Four stages of amyloid fibrils formation by this protein from the first non-fibrillar aggregates to mature fibrils and large micron-sized complexes have been described in detail. Dependence of albebetin amyloids formation on external conditions and some mutations also have been described. The introduction of similar point mutations in the two structurally identical α-β-β motifs of ABB lead to different amiloidogenesis kinetics. The inhibitory effect of a disulfide bond and high pH on amyloid fibrils formation, that can be used to control this process, was shown. The results of this work are a good basis for the further design and use of ABB-based amyloid constructs.


Sign in / Sign up

Export Citation Format

Share Document