scholarly journals Rigosertib-Activated JNK1/2 Eliminate Tumor Cells through p66Shc Activation

Biology ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 99
Author(s):  
Julia K. Günther ◽  
Aleksandar Nikolajevic ◽  
Susanne Ebner ◽  
Jakob Troppmair ◽  
Sana Khalid

Rigosertib, via reactive oxygen species (ROS), stimulates cJun N-terminal kinases 1/2 (JNK1/2), which inactivate RAS/RAF signaling and thereby inhibit growth and survival of tumor cells. JNK1/2 are not only regulated by ROS—they in turn can also control ROS production. The prooxidant and cell death function of p66Shc requires phosphorylation by JNK1/2. Here, we provide evidence that establishes p66Shc, an oxidoreductase, as a JNK1/2 effector downstream of Rigosertib-induced ROS production, DNA damage, and cell death. This may provide a common pathway for suppression of tumor cell growth by Rigosertib.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1305-1305
Author(s):  
Kejie Zhang ◽  
Lan V Pham ◽  
Archito T. Tamayo ◽  
John Lee ◽  
Jerry Bryant ◽  
...  

Abstract Abstract 1305 Cancer cells exist in a stressed environment, mainly due to lack of nutrients and oxygen, particularly during chemotherapy, and rely on metabolic homeostatic regulatory mechanisms for protection against these lethal challenges. Increasing glucose metabolism and continuous reactive oxygen species (ROS) production is one strategy of metabolic adaptation utilized by tumor cells to relieve this stress. Thioredoxin interacting protein (TXNIP) is a negative regulator for both redox thioredoxin (ROS production) and cellular glucose uptake, not well understood but found to be repressed in various cancers, including diffuse large B-cell lymphomas (DLBCL), the most common form of non-Hodgkin lymphoma that continues increasing in incidence and remains incurable in many cases, primarily due to development of chemo-resistance. The molecular mechanisms by which TXNIP expression is down-regulated during cancer progression and chemo-resistance development have not been completely elucidated. Since key gene silencing events have now been identified in the pathogenesis of DLBCL, recent therapeutic interest has focused on dysregulated histone modifications as potentially important therapeutic targets, for developing strategies that can reactivate silenced tumor suppressor genes. Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the polycomb repressive complex 2 (PRC2), is a highly conserved histone methyltransferase that targets lysine-27 of histone H3 (H3K27). Studies in human tumors show that EZH2 is frequently over-expressed in a wide variety of tumors, including lymphomas. More importantly, recent studies using whole-genome sequencing in primary DLBCL, identified frequent mutations in the EZH2 gene that leads to critical gene silencing in DLBCL pathophysiology. Our study showed that EZH2 is either over-expressed or mutated in representative DLBCL cell lines and primary DLBCL cells, and that down-regulation of EZH2 with siRNA leads to the reactivation of TXNIP, with subsequent inhibition of tumor cell growth and survival mediated through both thioredoxin and glucose metabolism in DLBCL. We also found that histone deacetylation (HDAC) is also involved in EZH2-mediated silencing of TXNIP in DLBCL. Pharmacologic agents aimed at reactivating TXNIP genes include histone methylation inhibitor 3-Deazaneplanocin A (DZNep) that targets EZH2, as well as HDAC inhibitor Vorinostat. DZNep is currently the only histone methylation inhibitor that is commercially available. Our data indicated that DZNep is highly effective in inhibiting cell growth in various DLBCL cell lines, particularly in chemo-resistant DLBCL cell lines. Vorinostat, on the other hand, has been a good drug and is currently in clinical trial for relapsed DLBCL and has been FDA approved for treating cutaneous T-cell lymphoma patients. Our data showed synergistic activity of DZNep and Vorinostat in reactivating TXNIP gene expression and inhibiting DLBCL cell growth and survival. We also discovered that EZH2 controls constitutive NF-κB activity through both, the canonical and alternative NF-κB pathways in DLBCL. This function of EZH2 is independent of its histone methyltransferase activity. These findings reveal that EZH2 and NF-κB, the two oncogenic factors display functional crosstalk in DLBCL cells. Our findings have indicated that deregulated EZH2 leads to constitutive NF-kB activation and to epigenetic silencing of TXNIP, resulting in uncontrolled tumor cell growth and survival mediated through both thioredoxin and glucose metabolism in DLBCL, and that targeting this pathway represents a novel, rational, and effective therapeutic approach to selectively reverse chemoresistance in DLBCL patients, particularly relapsed/refractory patients. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Piyarat Srinont ◽  
Jaroon Wandee ◽  
Worapol Angwanich

Abstract Paraquat (PQ) is an herbicide commonly used worldwide. This herbicide is known to alter the human and animal immune systems. Many reports indicated that PQ impacts immune cell viability and functions. However, the underlying mechanism critical is still unknown. Therefore, the aim of this study was to evaluate effects of PQ on free radical production, oxidative stress, cell death, and pro-inflammatory gene expression of murine bone marrow-derived macrophages (BMDMs) from female C57BL/6NJcl mice in vitro. BMDMs were incubated with PQ at 0, 200, 400 µM for 24 h. Intracellular reactive oxygen species (ROS) production, apoptosis, cell viability, nitric oxide, inducible nitric oxide synthase (iNOS), and IL-6 expression of murine BMDMs were measured. The results revealed that PQ treatments led to decrease the cell viability and induced apoptotic cell death in a dose-dependent manner. Additionally, PQ induced reactive oxygen species (ROS) generation. The mRNA expression level of pro-inflammatory mediator gene IL-6 and inducible nitric oxide synthase (iNOS) were elevated, while the level of lipid peroxides (MDA) production was unaltered by PQ treatment. Interestingly, PQ led to a decrease in nitric oxide production depends on its concentration. These phenomena indicated that PQ increased cellular ROS production which induced apoptosis, and the herbicide triggers production of iNOS and IL-6 in murine BMDMs.


2021 ◽  
Vol 22 (20) ◽  
pp. 10987
Author(s):  
Senzhen Wang ◽  
Xiaojuan Xu ◽  
Delu Che ◽  
Ronghui Fan ◽  
Mengke Gao ◽  
...  

Increasing the level of reactive oxygen species (ROS) in cancer cells has been suggested as a viable approach to cancer therapy. Our previous study has demonstrated that mitochondria-targeted flavone-naphthalimide-polyamine conjugate 6c elevates the level of ROS in cancer cells. However, the detailed role of ROS in 6c-treated cancer cells is not clearly stated. The biological effects and in-depth mechanisms of 6c in cancer cells need to be further investigated. In this study, we confirmed that mitochondria are the main source of 6c-induced ROS, as demonstrated by an increase in 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSox fluorescence. Compound 6c-induced mitochondrial ROS caused mitochondrial dysfunction and lysosomal destabilization confirmed by absolute quantitation (iTRAQ)-based comparative proteomics. Compound 6c-induced metabolic pathway dysfunction and lysosomal destabilization was attenuated by N-acetyl-L-cysteine (NAC). iTRAQ-based comparative proteomics showed that ROS regulated the expression of 6c-mediated proteins, and treatment with 6c promoted the formation of autophagosomes depending on ROS. Compound 6c-induced DNA damage was characterized by comet assay, p53 phosphorylation, and γH2A.X, which was diminished by pretreatment with NAC. Compound 6c-induced cell death was partially reversed by 3-methyladenine (3-MA), bafilomycin (BAF) A1, and NAC, respectively. Taken together, the data obtained in our study highlighted the involvement of mitochondrial ROS in 6c-induced autophagic cell death, mitochondrial and lysosomal dysfunction, and DNA damage.


2021 ◽  
Author(s):  
◽  
Natelle C H Quek

<p>Natural products offer vast structural and chemical diversity highly sought after in drug discovery research. Saccharomyces cerevisiae makes an ideal model eukaryotic organism for drug mode-of-action studies owing to ease of growth, sophistication of genetic tools and overall homology to higher eukaryotes. Equisetin and a closely related novel natural product, TA-289, are cytotoxic to fermenting yeast, but seemingly less so when yeast actively respire. Cell cycle analyses by flow cytometry revealed a cell cycle block at S-G2/M phase caused by TA-289; previously described oxidative stress-inducing compounds causing cell cycle delay led to further investigation in the involvement of equisetin and TA-289 in mitochondrial-mediated generation of reactive oxygen species. Chemical genomic profiling involving genome-wide scans of yeast deletion mutant strains for TA-289 sensitivity revealed sensitization of genes involved in the mitochondria, DNA damage repair and oxidative stress responses, consistent with a possible mechanism-of-action at the mitochondrion. Flow cytometric detection of reactive oxygen species (ROS) generation caused by TA-289 suggests that the compound may induce cell death via ROS production. The generation of a mutant strain resistant to TA-289 also displayed resistance to a known oxidant, H2O2, at concentrations that were cytotoxic to wild-type cells. The resistant mutant displayed a higher basal level of ROS production compared to the wild-type parent, indicating that the resistance mutation led to an up-regulation of antioxidant capacity which provides cell survival in the presence of TA-289. Yeast mitochondrial morphology was visualized by confocal light microscopy, where it was observed that cells treated with TA-289 displayed abnormal mitochondria phenotypes, further indicating that the compound is acting primarily at the mitochondrion. Similar effects observed with equisetin treatment suggest that both compounds share the same mechanism, eliciting cell death via ROS production in the mitochondrial respiratory chain.</p>


2021 ◽  
pp. 105252
Author(s):  
Carlos Angelé-Martínez ◽  
Fathima S. Ameer ◽  
Yash Raval ◽  
Guohui Huang ◽  
Tzuen-Rong J. Tzeng ◽  
...  

2009 ◽  
Vol 20 (1) ◽  
pp. 218-232 ◽  
Author(s):  
Kazunori Mori ◽  
Etsuko Hirao ◽  
Yosuke Toya ◽  
Yukiko Oshima ◽  
Fumihiro Ishikawa ◽  
...  

Anchorage dependence of cell growth and survival is a critical trait that distinguishes nontransformed cells from transformed cells. We demonstrate that anchorage dependence is determined by anchorage-dependent nuclear retention of cyclin D1, which is regulated by the focal adhesion protein, Hic-5, whose CRM1-dependent nuclear export counteracts that of cyclin D1. An adaptor protein, PINCH, interacts with cyclin D1 and Hic-5 and potentially serves as an interface for the competition between cyclin D1 and Hic-5 for CRM1. In nonadherent cells, the nuclear export of Hic-5, which is redox-sensitive, was interrupted due to elevated production of reactive oxygen species, and cyclin D1 was exported from the nucleus. When an Hic-5 mutant that was continuously exported in a reactive oxygen species-insensitive manner was introduced into the cells, cyclin D1 was retained in the nucleus under nonadherent conditions, and a significant population of cells escaped from growth arrest or apoptosis. Interestingly, activated ras achieved predominant cyclin D1 nuclear localization and thus, growth in nonadherent cells. We report a failsafe system for anchorage dependence of cell growth and survival.


Sign in / Sign up

Export Citation Format

Share Document