scholarly journals Targeted Central Nervous System Irradiation of Caenorhabditis elegans Induces a Limited Effect on Motility

Biology ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 289
Author(s):  
Michiyo Suzuki ◽  
Zu Soh ◽  
Hiroki Yamashita ◽  
Toshio Tsuji ◽  
Tomoo Funayama

To clarify the tissue responsible for a biological function, that function can be experimentally perturbed by an external stimulus, such as radiation. Radiation can be precisely and finely administered and any subsequent change in function examined. To investigate the involvement of the central nervous system (CNS) in Caenorhabditis elegans’ locomotion, we irradiated a limited 20-µm-diameter area of the CNS with a single dose and evaluated the resulting effects on motility. However, whether irradiated area (beam size)-dependent or dose-dependent effects on motility occur via targeted irradiation remain unknown. In the present study, we examined the irradiated area- and dose-dependent effects of CNS-targeted irradiation on the motility of C. elegans using a collimating microbeam system and confirmed the involvement of the CNS and body-wall muscle cells around the CNS in motility. After CNS-targeted microbeam irradiation, C. elegans’ motility was assayed. The results demonstrated a dose-dependent effect of CNS-targeted irradiation on motility reflecting direct effects on the irradiated CNS. In addition, when irradiated with 1000-Gy irradiation, irradiated area (beam size)-dependent effects were observed. This method has two technical advantages: Performing a series of on-chip imaging analyses before and after irradiation and targeted irradiation using a distinct ion-beam size.

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1631-1639
Author(s):  
Yo Suzuki ◽  
Gail A Morris ◽  
Min Han ◽  
William B Wood

Abstract The signaling pathway initiated by the TGF-β family member DBL-1 in Caenorhabditis elegans controls body shape in a dose-dependent manner. Loss-of-function (lf) mutations in the dbl-1 gene cause a short, small body (Sma phenotype), whereas overexpression of dbl-1 causes a long body (Lon phenotype). To understand the cellular mechanisms underlying these phenotypes, we have isolated suppressors of the Sma phenotype resulting from a dbl-1(lf) mutation. Two of these suppressors are mutations in the lon-3 gene, of which four additional alleles are known. We show that lon-3 encodes a collagen that is a component of the C. elegans cuticle. Genetic and reporter-gene expression analyses suggest that lon-3 is involved in determination of body shape and is post-transcriptionally regulated by the dbl-1 pathway. These results support the possibility that TGF-β signaling controls C. elegans body shape by regulating cuticle composition.


1996 ◽  
Vol 85 (4) ◽  
pp. 901-912 ◽  
Author(s):  
Michael C. Crowder ◽  
Laynie D. Shebester ◽  
Tim Schedl

Background The nematode Caenorhabditis elegans offers many advantages as a model organism for studying volatile anesthetic actions. It has a simple, well-understood nervous system; it allows the researcher to do forward genetics; and its genome will soon be completely sequenced. C. elegans is immobilized by volatile anesthetics only at high concentrations and with an unusually slow time course. Here other behavioral dysfunctions are considered as anesthetic endpoints in C. elegans. Methods The potency of halothane for disrupting eight different behaviors was determined by logistic regression of concentration and response data. Other volatile anesthetics were also tested for some behaviors. Established protocols were used for behavioral endpoints that, except for pharyngeal pumping, were set as complete disruption of the behavior. Time courses were measured for rapid behaviors. Recovery from exposure to 1 or 4 vol% halothane was determined for mating, chemotaxis, and gross movement. All experiments were performed at 20 to 22 degrees C. Results The median effective concentration values for halothane inhibition of mating (0.30 vol%-0.21 mM), chemotaxis (0.34 vol%-0.24 mM), and coordinated movement (0.32 vol% - 0.23 mM) were similar to the human minimum alveolar concentration (MAC; 0.21 mM). In contrast, halothane produced immobility with a median effective concentration of 3.65 vol% (2.6 mM). Other behaviors had intermediate sensitivities. Halothane's effects reached steady-state in 10 min for all behaviors tested except immobility, which required 2 h. Recovery was complete after exposure to 1 vol% halothane but was significantly reduced after exposure to immobilizing concentrations. Conclusions Volatile anesthetics selectively disrupt C. elegans behavior. The potency, time course, and recovery characteristics of halothane's effects on three behaviors are similar to its anesthetic properties in vertebrates. The affected nervous system molecules may express structural motifs similar to those on vertebrate anesthetic targets.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 1641-1651 ◽  
Author(s):  
Roger Krenger ◽  
Thomas Lehnert ◽  
Martin A. M. Gijs

A nanocalorimetry system with integrated microfluidic chips for on-chip measurements of metabolic heat signals of C. elegans.


2018 ◽  
Vol 373 (1758) ◽  
pp. 20170377 ◽  
Author(s):  
Hexuan Liu ◽  
Jimin Kim ◽  
Eli Shlizerman

We propose an approach to represent neuronal network dynamics as a probabilistic graphical model (PGM). To construct the PGM, we collect time series of neuronal responses produced by the neuronal network and use singular value decomposition to obtain a low-dimensional projection of the time-series data. We then extract dominant patterns from the projections to get pairwise dependency information and create a graphical model for the full network. The outcome model is a functional connectome that captures how stimuli propagate through the network and thus represents causal dependencies between neurons and stimuli. We apply our methodology to a model of the Caenorhabditis elegans somatic nervous system to validate and show an example of our approach. The structure and dynamics of the C. elegans nervous system are well studied and a model that generates neuronal responses is available. The resulting PGM enables us to obtain and verify underlying neuronal pathways for known behavioural scenarios and detect possible pathways for novel scenarios. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.


1994 ◽  
Vol 77 (4) ◽  
pp. 1644-1652 ◽  
Author(s):  
M. Bonora ◽  
M. Boule

The influence of steady-state changes in chemical stimuli on ventilation and electromyographic activity of the diaphragm during both inspiration (total DI) and expiration (total DE) was studied in unanesthetized intact adult cats before and after carotid denervation. In intact animals, during hypercapnia (2 4, and 6% CO2), tidal volume (VT) and total DI increase, whereas total DE did not consistently change. During ambient hypocapnic hypoxia (14, 12, and 10% O2), VT increased only at 10% O2, whereas total DI increased at all levels studied. Total DE increased substantially at 14% O2, persisting up to the end of expiration with 12 and 10% O2. This effect was markedly attenuated during normocapnic hypoxia. During CO hypoxemia (1,700 ppm in air), VT as well as total DI and total DE decreased because of a large reduction in inspiratory and expiratory time elicited by tachypneic breathing. The effects of hypercapnia and hypoxia persisted after carotid denervation. Therefore, 1) in contrast to hypercapnia, hypoxia markedly enhances the expiratory diaphragmatic activity, 1) this expiratory braking mechanism depends on the severity of hypoxia and is partly due to hypocapnia secondary to hypoxia; and 3) because this effect was observed after carotid denervation and during CO hypoxemia, it may arise in the central nervous system, possibly in bulbopontine structures.


2017 ◽  
Vol 80 (2) ◽  
pp. 355-360
Author(s):  
J. L. Aalhus ◽  
R. D. Thacker ◽  
I. L. Larsen ◽  
J. C. Roberts ◽  
M. A. Price ◽  
...  

ABSTRACT Consumption of central nervous system tissue (CNST) from cattle with bovine spongiform encephalopathy (BSE) is thought to cause the human neurological disease, variant Creutzfeldt-Jacob disease. To identify points of cross-contamination of beef carcasses with CNST, 55 young beef cattle were slaughtered and processed through a federally inspected multispecies abattoir. The objectives of this study were to evaluate CNST spread following the placement of a plug in the penetration site of the skull after captive bolt stunning, to evaluate cross-contamination of carcasses before and after splitting, to compare the effects of hot water pasteurization (84°C for 10 s) versus cold water wash (10°C for 30 s) for reducing CNST on the carcass, and to examine other possible sources of cross-contamination in the abattoir. Results indicated that the use of a plastic plug reduced CNST contamination near the bolt penetration site. This study also confirmed that carcass splitting resulted in an increase in CNST contamination at various areas of the carcass. Hot water pasteurization appeared to be an effective means of removing CNST contamination from carcasses in most of the areas sampled.


1990 ◽  
Vol 258 (3) ◽  
pp. E482-E484 ◽  
Author(s):  
E. P. Gomez-Sanchez ◽  
C. M. Fort ◽  
C. E. Gomez-Sanchez

The chronic intracerebroventricular (icv) infusion of aldosterone in rats and dogs elevates the blood pressure within 10-14 days at doses far below those that produce hypertension systemically. The effect in rats is dose dependent and blocked by the concomitant icv infusion of the antimineralocorticoid, prorenone. The effect of the icv infusion of RU28318, another specific spironolactone mineralocorticoid antagonist, on the hypertension produced by chronic subcutaneous (sc) administration of aldosterone in sensitized rats was reported. Miniosmotic pumps were used to deliver 1 micrograms/h aldosterone sc and 1.1 micrograms/h RU8318 icv. Over a 24-day period the indirect systolic blood pressure of the control, RU28318 icv, and aldosterone sc plus RU28318 icv groups increased from 105 to 123 mmHg and were not significantly different from each other, whereas the aldosterone sc group increased to 156 mmHg. RU28318, icv or sc, did not alter the increase in urine volume produced by aldosterone sc, and there was no significant differences in weight between the groups. This study provides evidence of the importance of the central nervous system in the pathogenesis of hypertension produced by systemic mineralocorticoid excess.


1994 ◽  
Vol 39 (7) ◽  
pp. 400-405 ◽  
Author(s):  
Scot E. Purdon ◽  
Wilson Lit ◽  
Alain Labelle ◽  
Barry D.W. Jones

Elevated concentrations of blood serotonin have been documented in autistic children and mentally retarded adults. Antiserotonergic pharmacotherapy has been partially effective in treating a subgroup of children with autistic disorder. Therefore, the possibility is raised that an antiserotonergic treatment may be of value to adult psychiatric patients with a history of pervasive developmental disorder. Two such cases are described where the patients underwent psychiatric and neuropsychological examination before and after treatment with risperidone, a potent 5-HT2 antagonist with additional D2 antagonistic properties. Particular improvements were documented in both patients, despite long histories of cognitive compromise and high likelihood of damage to the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document