scholarly journals Methylation of the Suppressor Gene p16INK4a: Mechanism and Consequences

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 446 ◽  
Author(s):  
Alfonso Tramontano ◽  
Francesca Ludovica Boffo ◽  
Giusi Russo ◽  
Mariarosaria De Rosa ◽  
Ilaria Iodice ◽  
...  

Tumor suppressor genes in the CDKN2A/B locus (p15INK4b, p16INK4a, and p14ARF) function as biological barriers to transformation and are the most frequently silenced or deleted genes in human cancers. This gene silencing frequently occurs due to DNA methylation of the promoter regions, although the underlying mechanism is currently unknown. We present evidence that methylation of p16INK4a promoter is associated with DNA damage caused by interference between transcription and replication processes. Inhibition of replication or transcription significantly reduces the DNA damage and CpGs methylation of the p16INK4a promoter. We conclude that de novo methylation of the promoter regions is dependent on local DNA damage. DNA methylation reduces the expression of p16INK4a and ultimately removes this barrier to oncogene-induced senescence.

Leukemia ◽  
2000 ◽  
Vol 14 (1) ◽  
pp. 183-187 ◽  
Author(s):  
M González ◽  
MV Mateos ◽  
R García-Sanz ◽  
A Balanzategui ◽  
R López-Pérez ◽  
...  

1994 ◽  
Vol 14 (11) ◽  
pp. 7059-7067
Author(s):  
V P Miao ◽  
M J Singer ◽  
M R Rountree ◽  
E U Selker

Transformation of eukaryotic cells can be used to test potential signals for DNA methylation. This approach is not always reliable, however, because of chromosomal position effects and because integration of multiple and/or rearranged copies of transforming DNA can influence DNA methylation. We developed a robust system to evaluate the potential of DNA fragments to function as signals for de novo methylation in Neurospora crassa. The requirements of the system were (i) a location in the N. crassa genome that becomes methylated only in the presence of a bona fide methylation signal and (ii) an efficient gene replacement protocol. We report here that the am locus fulfills these requirements, and we demonstrate its utility with the identification of a 2.7-kb fragment from the psi 63 locus as a new portable signal for de novo methylation.


2021 ◽  
Author(s):  
Masaki Shirai ◽  
Takuya Nara ◽  
Haruko Takahashi ◽  
Kazuya Takayama ◽  
Yuan Chen ◽  
...  

CpG methylation in genomic DNA is well known as a repressive epigenetic marker in eukaryotic transcription, and DNA methylation of the promoter regions is correlated with silencing of gene expression. In contrast to the promoter regions, the function of DNA methylation during transcription termination remains to be elucidated. A recent study has revealed that mouse DNA methyltransferase 3a (Dnmt3a) mainly functions in de novo methylation in the promoter and gene body regions (including transcription termination sites (TTSs)) during development. To investigate the relationship between DNA methylation overlapping the TTSs and transcription termination, we employed two strategies: informatic analysis using already deposited datasets of Dnmt3a-/- mouse cells and the zebrafish model system. Bioinformatic analysis using methylome and transcriptome data showed that hypomethylated differentially methylated regions overlapping the TTSs were associated with increased read counts and chimeric transcripts downstream of TTSs in Dnmt3a-/- Agouti-related protein neurons, but not in Dnmt3a-/- ES cells and MEFs. We experimentally detected increased read-through and chimeric transcripts downstream of hypomethylated TTSs in zebrafish maternal-zygotic dnmt3aa-/- mutants. This study is the first to identify transcription termination defects in DNA hypomethylated TTSs in Dnmt3a-/- vertebrates.


1998 ◽  
Vol 18 (9) ◽  
pp. 5166-5177 ◽  
Author(s):  
Judy A. Mikovits ◽  
Howard A. Young ◽  
Paula Vertino ◽  
Jean-Pierre J. Issa ◽  
Paula M. Pitha ◽  
...  

ABSTRACT The immune response to pathogens is regulated by a delicate balance of cytokines. The dysregulation of cytokine gene expression, including interleukin-12, tumor necrosis factor alpha, and gamma interferon (IFN-γ), following human retrovirus infection is well documented. One process by which such gene expression may be modulated is altered DNA methylation. In subsets of T-helper cells, the expression of IFN-γ, a cytokine important to the immune response to viral infection, is regulated in part by DNA methylation such that mRNA expression inversely correlates with the methylation status of the promoter. Of the many possible genes whose methylation status could be affected by viral infection, we examined the IFN-γ gene as a candidate. We show here that acute infection of cells with human immunodeficiency virus type 1 (HIV-1) results in (i) increased DNA methyltransferase expression and activity, (ii) an overall increase in methylation of DNA in infected cells, and (iii) the de novo methylation of a CpG dinucleotide in the IFN-γ gene promoter, resulting in the subsequent downregulation of expression of this cytokine. The introduction of an antisense methyltransferase construct into lymphoid cells resulted in markedly decreased methyltransferase expression, hypomethylation throughout the IFN-γ gene, and increased IFN-γ production, demonstrating a direct link between methyltransferase and IFN-γ gene expression. The ability of increased DNA methyltransferase activity to downregulate the expression of genes like the IFN-γ gene may be one of the mechanisms for dysfunction of T cells in HIV-1-infected individuals.


2012 ◽  
Vol 24 (1) ◽  
pp. 154
Author(s):  
A. T. Grazul-Bilska ◽  
M. L. Johnson ◽  
P. P. Borowicz ◽  
D. A. Redmer ◽  
L. P. Reynolds

Compromised pregnancies can be caused by genetic, epigenetic, environmental and/or other factors. Assisted reproductive technology (ART) may have profound effects on placental and fetal development, leading eventually to compromised pregnancy. DNA methylation, regulated by DNA methyltransferases (Dnmt) and other factors, plays an important role during embryonic, including placental, development. Altered DNA methylation in the trophoblast and, subsequently, the placenta has been reported for compromised pregnancies and may contribute to embryonic/fetal loss. Little is known, however, about DNA methylation processes in placental tissues during early stages of normal or compromised pregnancies in any species. Thus, we hypothesised that ART would affect the expression of 5 methylcytosine (5mC; a marker of global methylation) and mRNA for Dnmt1, 3a and 3b in utero-placental tissues during early pregnancy in sheep. Pregnancies (n = 7 per group) were achieved through natural breeding (NAT, control), or transfer of embryos generated through natural breeding (NAT-ET), in vitro fertilization (IVF) or in vitro activation (IVA; parthenogenetic clones). On Day 22 of pregnancy, caruncle (CAR; maternal placenta) and fetal membranes (FM; fetal placenta) were snap-frozen separately for RNA extraction followed by quantitative real-time PCR. In addition, cross sections of gravid uterus were fixed and then used for immunohistochemical detection and image analysis of 5 mC in FM. In FM, expression of mRNA for Dnmt3a was ∼2-fold greater (P < 0.01) in IVA compared with the other groups and was similar in NAT, NAT-ET and IVF groups. Expression of 5 mC was ∼2- to 3-fold greater (P < 0.02) in IVF and IVA than in NAT. In CAR, mRNA expression for Dnmt1 was ∼1.5-fold greater (P < 0.04) in IVA compared with the other groups, but Dnmt3a expression was less (P < 0.04) in NAT-ET and IVA than NAT. Expression of mRNA for Dnmt1 in FM and 3b in FM and CAR was similar in all groups. In IVA and/or IVF pregnancy, increased expression of Dnmt3a mRNA and/or 5 mC in FM may indicate de novo methylation in the fetal placenta. Furthermore, in pregnancies created through ART, decreased expression of Dnmt3a in CAR may indicate reduced de novo methylation in maternal placenta. Thus, in sheep, ART may have specific effects on growth and function of utero-placental and fetal tissues through regulation of DNA methylation and likely other mechanisms. These data provide a foundation for determining the basis for altered DNA methylation of specific genes in placental and embryonic tissues in compromised pregnancies. In addition, these data will help us to better understand placental regulatory mechanisms in compromised pregnancies and to identify strategies for rescuing such pregnancies. Supported by Hatch Project ND01712; USDA grant 2007-01215 to LPR and ATGB, NIH grant HL64141 to LPR and DAR and NSF-MRI-ARRA grant to ATGB.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 225 ◽  
Author(s):  
Zhongliang Jiang ◽  
Yanhao Lai ◽  
Jill M. Beaver ◽  
Pawlos S. Tsegay ◽  
Ming-Lang Zhao ◽  
...  

DNA damage and base excision repair (BER) are actively involved in the modulation of DNA methylation and demethylation. However, the underlying molecular mechanisms remain unclear. In this study, we seek to understand the mechanisms by exploring the effects of oxidative DNA damage on the DNA methylation pattern of the tumor suppressor breast cancer 1 (BRCA1) gene in the human embryonic kidney (HEK) HEK293H cells. We found that oxidative DNA damage simultaneously induced DNA demethylation and generation of new methylation sites at the CpGs located at the promoter and transcribed regions of the gene ranging from −189 to +27 in human cells. We demonstrated that DNA damage-induced demethylation was mediated by nucleotide misincorporation by DNA polymerase β (pol β). Surprisingly, we found that the generation of new DNA methylation sites was mediated by coordination between pol β and the de novo DNA methyltransferase, DNA methyltransferase 3b (DNMT3b), through the interaction between the two enzymes in the promoter and encoding regions of the BRCA1 gene. Our study provides the first evidence that oxidative DNA damage can cause dynamic changes in DNA methylation in the BRCA1 gene through the crosstalk between BER and de novo DNA methylation.


2003 ◽  
Vol 23 (16) ◽  
pp. 5594-5605 ◽  
Author(s):  
Taiping Chen ◽  
Yoshihide Ueda ◽  
Jonathan E. Dodge ◽  
Zhenjuan Wang ◽  
En Li

ABSTRACT We have previously shown that the DNA methyltransferases Dnmt3a and Dnmt3b carry out de novo methylation of the mouse genome during early postimplantation development and of maternally imprinted genes in the oocyte. In the present study, we demonstrate that Dnmt3a and Dnmt3b are also essential for the stable inheritance, or “maintenance,” of DNA methylation patterns. Inactivation of both Dnmt3a and Dnmt3b in embryonic stem (ES) cells results in progressive loss of methylation in various repeats and single-copy genes. Interestingly, introduction of the Dnmt3a, Dnmt3a2, and Dnmt3b1 isoforms back into highly demethylated mutant ES cells restores genomic methylation patterns; these isoforms appear to have both common and distinct DNA targets, but they all fail to restore the maternal methylation imprints. In contrast, overexpression of Dnmt1 and Dnmt3b3 failed to restore DNA methylation patterns due to their inability to catalyze de novo methylation in vivo. We also show that hypermethylation of genomic DNA by Dnmt3a and Dnmt3b is necessary for ES cells to form teratomas in nude mice. These results indicate that genomic methylation patterns are determined partly through differential expression of different Dnmt3a and Dnmt3b isoforms.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Shaohui Hu ◽  
Jun Wan ◽  
Yijing Su ◽  
Qifeng Song ◽  
Yaxue Zeng ◽  
...  

DNA methylation, especially CpG methylation at promoter regions, has been generally considered as a potent epigenetic modification that prohibits transcription factor (TF) recruitment, resulting in transcription suppression. Here, we used a protein microarray-based approach to systematically survey the entire human TF family and found numerous purified TFs with methylated CpG (mCpG)-dependent DNA-binding activities. Interestingly, some TFs exhibit specific binding activity to methylated and unmethylated DNA motifs of distinct sequences. To elucidate the underlying mechanism, we focused on Kruppel-like factor 4 (KLF4), and decoupled its mCpG- and CpG-binding activities via site-directed mutagenesis. Furthermore, KLF4 binds specific methylated or unmethylated motifs in human embryonic stem cells in vivo. Our study suggests that mCpG-dependent TF binding activity is a widespread phenomenon and provides a new framework to understand the role and mechanism of TFs in epigenetic regulation of gene transcription.


1986 ◽  
Vol 6 (1) ◽  
pp. 195-200
Author(s):  
M E Zolan ◽  
P J Pukkila

We examined the inheritance of 5-methylcytosine residues at a centromere-linked locus in the basidiomycete Coprinus cinereus. Although methylated and unmethylated tracts were inherited both mitotically and meiotically the lengths of these tracts were variable. This variation was not confined to any one phase of the life cycle of the organism, and it usually involved the simultaneous de novo methylation of at least four HpaII-MspI sites. We also found that the higher levels of methylation at this locus were transmitted through meiosis, regardless of the level of methylation of the homologous chromosome.


2019 ◽  
Vol 104 (11) ◽  
pp. 5673-5692 ◽  
Author(s):  
Cristóbal Bernardo-Castiñeira ◽  
Nuria Valdés ◽  
Lucía Celada ◽  
Andrés San José Martinez ◽  
I Sáenz-de-Santa-María ◽  
...  

Abstract Context SDHB mutations are found in an increasing number of neoplasms, most notably in paragangliomas and pheochromocytomas (PPGLs). SDHB-PPGLs are slow-growing tumors, but ∼50% of them may develop metastasis. The molecular basis of metastasis in these tumors is a long-standing and unresolved problem. Thus, a better understanding of the biology of metastasis is needed. Objective This study aimed to identify gene methylation changes relevant for metastatic SDHB-PPGLs. Design We performed genome-wide profiling of DNA methylation in diverse clinical and genetic PPGL subtypes, and validated protocadherin γ-C3 (PCDHGC3) gene promoter methylation in metastatic SDHB-PPGLs. Results We define an epigenetic landscape specific for metastatic SDHB-PPGLs. DNA methylation levels were found significantly higher in metastatic SDHB-PPGLs than in SDHB-PPGLs without metastases. One such change included long-range de novo methylation of the PCDHA, PCDHB, and PCDHG gene clusters. High levels of PCDHGC3 promoter methylation were validated in primary metastatic SDHB-PPGLs, it was found amplified in the corresponding metastases, and it was significantly correlated with PCDHGC3 reduced expression. Interestingly, this epigenetic alteration could be detected in primary tumors that developed metastasis several years later. We also show that PCDHGC3 down regulation engages metastasis-initiating capabilities by promoting cell proliferation, migration, and invasion. Conclusions Our data provide a map of the DNA methylome episignature specific to an SDHB-mutated cancer and establish PCDHGC3 as a putative suppressor gene and a potential biomarker to identify patients with SDHB-mutated cancer at high risk of metastasis who might benefit from future targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document