scholarly journals Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1144
Author(s):  
Ana Karina Aranda-Rivera ◽  
Alfredo Cruz-Gregorio ◽  
Omar Emiliano Aparicio-Trejo ◽  
José Pedraza-Chaverri

Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ayşe Balat ◽  
Mithat Büyükçelik

Human urotensin-II (hU-II) is one of the most potent vasoconstrictors in mammals. Although both hU-II and its receptor, GPR14, are detected in several tissues, kidney is a major source of U-II in humans. Recent studies suggest that U-II may have a possible autocrine/paracrine functions in kidney and may be an important target molecule in studying renal pathophysiology. It has several effects on tubular transport and probably has active role in renal hemodynamics. Although it is an important peptide in renal physiology, certain diseases, such as hypertension and glomerulonephritis, may alter the expression of U-II. As might be expected, oxidative stress, mediators, and inflammation are like a devil's triangle in kidney diseases, mostly they induce each other. Since there is a complex relationship between U-II and oxidative stress, and other mediators, such as transforming growth factorβ1 and angiotensin II, U-II is more than a mediator in glomerular diseases. Although it is an ancient peptide, known for 31 years, it looks like that U-II will continue to give new messages as well as raising more questions as research on it increases. In this paper, we mainly discuss the possible role of U-II on renal physiology and its effect on kidney diseases.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 72 ◽  
Author(s):  
Sahdeo Prasad ◽  
Sanjay K. Srivastava

Oxidative stress, caused by the overproduction of free radicals, leads to the development of many chronic diseases including cancer. Free radicals are known to damage cellular biomolecules like lipids, proteins, and DNA that results in activation of multiple signaling pathways, growth factors, transcription factors, kinases, inflammatory and cell cycle regulatory molecules. Antioxidants, which are classified as exogenous and endogenous, are responsible for the removal of free radicals and consequently the reduction in oxidative stress-mediated diseases. Diet and medicinal herbs are the major source of antioxidants. Triphala, which is a traditional Ayurvedic formulation that has been used for centuries, has been shown to have immense potential to boost antioxidant activity. It scavenges free radicals, restores antioxidant enzymes and non-enzyme levels, and decreases lipid peroxidation. In addition, Triphala is revered as a chemopreventive, chemotherapeutic, immunomodulatory, and radioprotective agent. Accumulated evidence has revealed that Triphala modulates multiple cell signaling pathways including, ERK, MAPK, NF-κB, Akt, c-Myc, VEGFR, mTOR, tubulin, p53, cyclin D1, anti-apoptotic and pro-apoptotic proteins. The present review focuses on the comprehensive appraisal of Triphala in oxidative stress and cancer.


Author(s):  
Sameer Chaudhary ◽  
Sapana Sameer Chaudhary ◽  
Sakshi Rawat ◽  
Savneet Kaur ◽  
Bogireddy Devi ◽  
...  

HSP27, also known as HSPB1, was first discovered with a molecular weight 27kDa belonging to the four member gene family. Elevated levels of HSP27 are seen when different unfavorable conditions prevail such as increase in temperature and oxidative stress or exposure to heavy metals or organic solvents. They possess ATP-independent chaperone like activity which helps in maintaining protein homeostasis. It can also form large oligomers (300-600 kDa) containing different numbers of subunits. It is composed of total 205 amino acids. HSP27 undergoes post-translational modifications i.e. phosphorylation thereby converting large oligomers into dimers. It can act as an anti-apoptotic and antioxidant molecule during oxidative stress.  The elevated form of HSP27 is also seen in some cancer belongs to breast, ovary, prostate, brain, colorectal, hepatocellular carcinoma, lung, liver, and cervical regions. Keeping in view of molecular roles of HSP27 signaling in various pathways, we have proposed their translational values in different diseases. In addition, we have also reported the existing scientific data on the HSP27 as the potential cancer biomarker and their therapeutic targets for improved prognosis and treatment in different diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Barbara Marengo ◽  
Mariapaola Nitti ◽  
Anna Lisa Furfaro ◽  
Renata Colla ◽  
Chiara De Ciucis ◽  
...  

Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.


2010 ◽  
Vol 6 (4) ◽  
pp. 280-290 ◽  
Author(s):  
Kenichi Watanabe ◽  
Rajarajan A. Thandavarayan ◽  
Meilei Harima ◽  
Flori R. Sari ◽  
Narasimman Gurusamy ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 3516-3526
Author(s):  
Tunyu Jian ◽  
Jian Chen ◽  
Xiaoqin Ding ◽  
Han Lv ◽  
Jiawei Li ◽  
...  

Total flavonoids isolated from loquat leaves inhibit inflammation and oxidative stress by regulating TRPV1 and the related pathway in cigarette smoke-induced COPD mice.


2020 ◽  
Vol 25 (40) ◽  
pp. 4310-4317 ◽  
Author(s):  
Lichao Sun ◽  
Shouqin Ji ◽  
Jihong Xing

Background/Aims: Central pro-inflammatory cytokine (PIC) signal is involved in neurological deficits after transient global ischemia induced by cardiac arrest (CA). The present study was to examine the role of microRNA- 155 (miR-155) in regulating IL-1β, IL-6 and TNF-α in the hippocampus of rats with induction of CA. We further examined the levels of products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α, indication of oxidative stress); and 8-hydroxy-2’-deoxyguanosine (8-OHdG, indication of protein oxidation) after cerebral inhibition of miR-155. Methods: CA was induced by asphyxia and followed by cardiopulmonary resuscitation in rats. ELISA and western blot analysis were used to determine the levels of PICs and products of oxidative stress; and the protein expression of NADPH oxidase (NOXs) in the hippocampus. In addition, neurological severity score and brain edema were examined to assess neurological functions. Results: We observed amplification of IL-1β, IL-6 and TNF-α along with 8-iso PGF2α and 8-OHdG in the hippocampus of CA rats. Cerebral administration of miR-155 inhibitor diminished upregulation of PICs in the hippocampus. This also attenuated products of oxidative stress and upregulation of NOX4. Notably, inhibition of miR-155 improved neurological severity score and brain edema and this was linked to signal pathways of PIC and oxidative stress. Conclusion: We showed the significant role of blocking miR-155 signal in improving the neurological function in CA rats likely via inhibition of signal pathways of neuroinflammation and oxidative stress, suggesting that miR-155 may be a target in preventing and/or alleviating development of the impaired neurological functions during CA-evoked global cerebral ischemia.


2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


2013 ◽  
Vol 8 (4) ◽  
pp. 266-277 ◽  
Author(s):  
Diego Duarte ◽  
Kamila Silva ◽  
Mariana Rosales ◽  
José Lopes de Faria ◽  
Jacqueline Lopes de Faria

Sign in / Sign up

Export Citation Format

Share Document