scholarly journals Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Barbara Marengo ◽  
Mariapaola Nitti ◽  
Anna Lisa Furfaro ◽  
Renata Colla ◽  
Chiara De Ciucis ◽  
...  

Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Simona Roxana Georgescu ◽  
Cristina Iulia Mitran ◽  
Madalina Irina Mitran ◽  
Constantin Caruntu ◽  
Maria Isabela Sarbu ◽  
...  

Human papillomavirus (HPV) is a small double-stranded DNA virus with tropism for epithelial cells. To this date, over 150 genotypes are known and are classified into two major groups, low-risk and high-risk strains, depending on the ability of the virus to induce malignant transformation. The host’s immunity plays a central role in the course of the infection; therefore, it may not be clinically manifest or may produce various benign or malignant lesions. The pathogenic mechanisms are complex and incompletely elucidated. Recent research suggests the role of chronic inflammation and oxidative stress (OS) in the pathogenesis of HPV infection and the associated carcinogenic processes. Chronic inflammation induces OS, which in turn promotes the perpetuation of the inflammatory process resulting in the release of numerous molecules which cause cell damage. Reactive oxygen species exert a harmful effect on proteins, lipids, and nucleic acids. Viral oncogenes E5, E6, and E7 are involved in the development of chronic inflammation through various mechanisms. In addition, HPV may interfere with redox homeostasis of host cells, inducing OS which may be involved in the persistence of the infection and play a certain role in viral integration and promotion of carcinogenesis. Knowledge regarding the interplay between chronic inflammation and OS in the pathogenesis of HPV infection and HPV-induced carcinogenesis has important consequences on the development of new therapeutic strategies.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 72 ◽  
Author(s):  
Sahdeo Prasad ◽  
Sanjay K. Srivastava

Oxidative stress, caused by the overproduction of free radicals, leads to the development of many chronic diseases including cancer. Free radicals are known to damage cellular biomolecules like lipids, proteins, and DNA that results in activation of multiple signaling pathways, growth factors, transcription factors, kinases, inflammatory and cell cycle regulatory molecules. Antioxidants, which are classified as exogenous and endogenous, are responsible for the removal of free radicals and consequently the reduction in oxidative stress-mediated diseases. Diet and medicinal herbs are the major source of antioxidants. Triphala, which is a traditional Ayurvedic formulation that has been used for centuries, has been shown to have immense potential to boost antioxidant activity. It scavenges free radicals, restores antioxidant enzymes and non-enzyme levels, and decreases lipid peroxidation. In addition, Triphala is revered as a chemopreventive, chemotherapeutic, immunomodulatory, and radioprotective agent. Accumulated evidence has revealed that Triphala modulates multiple cell signaling pathways including, ERK, MAPK, NF-κB, Akt, c-Myc, VEGFR, mTOR, tubulin, p53, cyclin D1, anti-apoptotic and pro-apoptotic proteins. The present review focuses on the comprehensive appraisal of Triphala in oxidative stress and cancer.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1144
Author(s):  
Ana Karina Aranda-Rivera ◽  
Alfredo Cruz-Gregorio ◽  
Omar Emiliano Aparicio-Trejo ◽  
José Pedraza-Chaverri

Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Stéphanie Anaís Castaldo ◽  
Joana Raquel Freitas ◽  
Nadine Vasconcelos Conchinha ◽  
Patrícia Alexandra Madureira

The cellular REDOX regulatory systems play a central role in maintaining REDOX homeostasis that is crucial for cell integrity, survival, and proliferation. To date, a substantial amount of data has demonstrated that cancer cells typically undergo increasing oxidative stress as the tumor develops, upregulating these important antioxidant systems in order to survive, proliferate, and metastasize under these extreme oxidative stress conditions. Since a large number of chemotherapeutic agents currently used in the clinic rely on the induction of ROS overload or change of ROS quality to kill the tumor, the cancer cell REDOX adaptation represents a significant obstacle to conventional chemotherapy. In this review we will first examine the different factors that contribute to the enhanced oxidative stress generally observed within the tumor microenvironment. We will then make a comprehensive assessment of the current literature regarding the main antioxidant proteins and systems that have been shown to be positively associated with tumor progression and chemoresistance. Finally we will make an analysis of commonly used chemotherapeutic drugs that induce ROS. The current knowledge of cancer cell REDOX adaptation raises the issue of developing novel and more effective therapies for these tumors that are usually resistant to conventional ROS inducing chemotherapy.


2020 ◽  
Vol 21 (12) ◽  
pp. 1216-1224
Author(s):  
Fatemeh Forouzanfar ◽  
Samira Asgharzade

Noise exposure (NE) has been recognized as one of the causes of sensorineural hearing loss (SNHL), which can bring about irreversible damage to sensory hair cells in the cochlea, through the launch of oxidative stress pathways and inflammation. Accordingly, determining the molecular mechanism involved in regulating hair cell apoptosis via NE is essential to prevent hair cell damage. However, the role of microRNAs (miRNAs) in the degeneration of sensory cells of the cochlea during NE has not been so far uncovered. Thus, the main purpose of this study was to demonstrate the regulatory role of miRNAs in the oxidative stress pathway and inflammation induced by NE. In this respect, articles related to noise-induced hearing loss (NIHL), oxidative stress, inflammation, and miRNA from various databases of Directory of Open Access Journals (DOAJ), Google Scholar, PubMed; Library, Information Science & Technology Abstracts (LISTA), and Web of Science were searched and retrieved. The findings revealed that several studies had suggested that up-regulation of miR-1229-5p, miR-451a, 185-5p, 186 and down-regulation of miRNA-96/182/183 and miR-30b were involved in oxidative stress and inflammation which could be used as biomarkers for NIHL. There was also a close relationship between NIHL and miRNAs, but further research is required to prove a causal association between miRNA alterations and NE, and also to determine miRNAs as biomarkers indicating responses to NE.


2021 ◽  
Vol 22 (7) ◽  
pp. 3682
Author(s):  
Dorota Gil ◽  
Piotr Laidler ◽  
Marta Zarzycka ◽  
Joanna Dulińska-Litewka

The twofold role of autophagy in cancer is often the therapeutic target. Numerous regulatory pathways are shared between autophagy and other molecular processes needed in tumorigenesis, such as translation or survival signaling. Thus, we have assumed that ILK knockdown should promote autophagy, and used together with chloroquine, an autophagy inhibitor, it could generate a better anticancer effect by dysregulation of common signaling pathways. Expression at the protein level was analyzed using Western Blot; siRNA transfection was done for ILK. Analysis of cell signaling pathways was monitored with phospho-specific antibodies. Melanoma cell proliferation was assessed with the crystal violet test, and migration was evaluated by scratch wound healing assays. Autophagy was monitored by the accumulation of its marker, LC3-II. Our data show that ILK knockdown by siRNA suppresses melanoma cell growth by inducing autophagy through AMPK activation, and simultaneously initiates apoptosis. We demonstrated that combinatorial treatment of melanoma cells with CQ and siILK has a stronger antitumor effect than monotherapy with either of these. It generates the synergistic antitumor effects by the decrease of translation of both global and oncogenic proteins synthesis. In our work, we point to the crosstalk between translation and autophagy regulation.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 525
Author(s):  
Valentina Lodde ◽  
Piero Morandini ◽  
Alex Costa ◽  
Irene Murgia ◽  
Ignacio Ezquer

This review explores the role of reactive oxygen species (ROS)/Ca2+ in communication within reproductive structures in plants and animals. Many concepts have been described during the last years regarding how biosynthesis, generation products, antioxidant systems, and signal transduction involve ROS signaling, as well as its possible link with developmental processes and response to biotic and abiotic stresses. In this review, we first addressed classic key concepts in ROS and Ca2+ signaling in plants, both at the subcellular, cellular, and organ level. In the plant science field, during the last decades, new techniques have facilitated the in vivo monitoring of ROS signaling cascades. We will describe these powerful techniques in plants and compare them to those existing in animals. Development of new analytical techniques will facilitate the understanding of ROS signaling and their signal transduction pathways in plants and mammals. Many among those signaling pathways already have been studied in animals; therefore, a specific effort should be made to integrate this knowledge into plant biology. We here discuss examples of how changes in the ROS and Ca2+ signaling pathways can affect differentiation processes in plants, focusing specifically on reproductive processes where the ROS and Ca2+ signaling pathways influence the gametophyte functioning, sexual reproduction, and embryo formation in plants and animals. The study field regarding the role of ROS and Ca2+ in signal transduction is evolving continuously, which is why we reviewed the recent literature and propose here the potential targets affecting ROS in reproductive processes. We discuss the opportunities to integrate comparative developmental studies and experimental approaches into studies on the role of ROS/ Ca2+ in both plant and animal developmental biology studies, to further elucidate these crucial signaling pathways.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 205
Author(s):  
Carmen Griñan-Lison ◽  
Jose L. Blaya-Cánovas ◽  
Araceli López-Tejada ◽  
Marta Ávalos-Moreno ◽  
Alba Navarro-Ocón ◽  
...  

Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on “redoxidomics” or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.


Author(s):  
Cecilia L. Basiglio ◽  
Fernando A. Crocenzi ◽  
Enrique Juan Sánchez Pozzi ◽  
Marcelo Gabriel Roma

Sign in / Sign up

Export Citation Format

Share Document