scholarly journals Novel Insight of Histamine and Its Receptor Ligands in Glaucoma and Retina Neuroprotection

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1186
Author(s):  
Silvia Sgambellone ◽  
Laura Lucarini ◽  
Cecilia Lanzi ◽  
Emanuela Masini

Glaucoma is a multifactorial neuropathy characterized by increased intraocular pressure (IOP), and it is the second leading cause of blindness worldwide after cataracts. Glaucoma combines a group of optic neuropathies characterized by the progressive degeneration of retinal ganglionic cells (RGCs). Increased IOP and short-term IOP fluctuation are two of the most critical risk factors in glaucoma progression. Histamine is a well-characterized neuromodulator that follows a circadian rhythm, regulates IOP and modulates retinal circuits and vision. This review summarizes findings from animal models on the role of histamine and its receptors in the eye, focusing on the effects of histamine H3 receptor antagonists for the future treatment of glaucomatous patients.

2020 ◽  
Vol 35 (4) ◽  
pp. 325-339
Author(s):  
Tara C. Delorme ◽  
Lalit K. Srivastava ◽  
Nicolas Cermakian

Schizophrenia is a multifactorial disorder caused by a combination of genetic variations and exposure to environmental insults. Sleep and circadian rhythm disturbances are a prominent and ubiquitous feature of many psychiatric disorders, including schizophrenia. There is growing interest in uncovering the mechanistic link between schizophrenia and circadian rhythms, which may directly affect disorder outcomes. In this review, we explore the interaction between schizophrenia and circadian rhythms from 2 complementary angles. First, we review evidence that sleep and circadian rhythm disturbances constitute a fundamental component of schizophrenia, as supported by both human studies and animal models with genetic mutations related to schizophrenia. Second, we discuss the idea that circadian rhythm disruption interacts with existing risk factors for schizophrenia to promote schizophrenia-relevant behavioral and neurobiological abnormalities. Understanding the mechanistic link between schizophrenia and circadian rhythms will have implications for mitigating risk to the disorder and informing the development of circadian-based therapies.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 594 ◽  
Author(s):  
Daniela Pellegrino ◽  
Daniele La Russa ◽  
Alessandro Marrone

Chronic kidney disease (CKD) is a major public health problem worldwide and affects both elderly and young subjects. Its main consequences include the loss of renal function, leading to end-stage renal disease, an increased risk of cardiovascular disease, a significant increase in morbidity and mortality, and a decrease in health-related quality of life. This review arose in significant part from work in the authors’ laboratory, complemented by literature data, and was based on a translational approach: we studied the role of many CKD risk factors, such as hypertension, obesity, and oxidative stress/inflammation. The aim was to identify new molecular mechanisms of kidney damage to prevent it through successful behavior modifications. For this purpose, in our studies, both human and animal models were used. In the animal models, we analyzed the mechanisms of renal damage induced by hypertension (spontaneously hypertensive rats) and obesity (cafeteria diet-fed rats), showing that redox disequilibrium in plasma and tissue is extremely important in renal alteration in terms of both oxidative damage (lipid peroxidation, altered expression antioxidant enzymes) and apoptotic pathway (intrinsic/extrinsic) activation. In hemodialysis patients, we explored the correlation between the global oxidative balance and both inflammatory markers and cardiovascular risk, showing a strong correlation between the oxidative index and the blood levels of C-reactive protein and previous cardiovascular events. This multilevel approach allowed us to individually and synergistically analyze some aspects of the complex pathogenic mechanisms of CKD in order to clarify the role of the new amplified risk factors for CKD and to prepare an effective personalized prevention plan by acting on both modifiable and nonmodifiable risk factors.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
Kirsten MB Huntjens ◽  
Tineke ACM van Geel ◽  
Svenhjalmar van Helden ◽  
Joop van den Bergh ◽  
Paul Willems ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2146
Author(s):  
Kah Kheng Goh ◽  
Chun-Hsin Chen ◽  
Hsien-Yuan Lane

Schizophrenia is a form of mental disorder that is behaviorally characterized by abnormal behavior, such as social function deficits or other behaviors that are disconnected from reality. Dysregulation of oxytocin may play a role in regulating the expression of schizophrenia. Given oxytocin’s role in social cognition and behavior, a variety of studies have examined the potential clinical benefits of oxytocin in improving the psychopathology of patients with schizophrenia. In this review, we highlight the evidence for the role of endogenous oxytocin in schizophrenia, from animal models to human studies. We further discuss the potential of oxytocin as a therapeutic agent for schizophrenia and its implication in future treatment.


2013 ◽  
Vol 71 (Suppl 3) ◽  
pp. 598.2-598
Author(s):  
K. Huntjens ◽  
T. van Geel ◽  
S. van Helden ◽  
J. van den Bergh ◽  
P. Geusens ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
Author(s):  
Bianca Magro ◽  
Matteo Tacelli ◽  
Luisa Pasulo ◽  
Massimo De Giorgio ◽  
Filippo Leonardi ◽  
...  

BACKGROUND: Sars-Cov-2 pneumonia is a pandemic disease with high morbidity and mortality. In literature transaminases, CRP and LDH were frequently found abnormal but their role has not been clarified. OBJECTIVES: Aim of this retrospective study is to explore the role of transaminases, CRP and LDH on short-term prognosis of hospitalized COVID-19 patients. METHODS: patients admitted in hospital for COVID-19 were consecutively recruited. Primary endpoint: evaluate role of transaminases, CRP and LDH on disease progression (DP). Secondary endpoints: find possible risk factors for (1) mortality and (2) CPAP ventilation at day 7. We also analyzed patients without respiratory failure at admission, also a subgroup of patients with liver disease. RESULTS: 342 patients were included. Median age of patients was 64 years (IQR 55-74), and 35.1% (n=120) was female. At multivariate analysis moderate ALT elevation at Day 1 (p=0.001, OR 2,42, CI95% 1.23-4,73) and CRP at Day 7 (p=0.001, OR 1, CI95% 1-1,1) were predictors of DP; LDH at admission (p=0.05, OR 1, CI95% 1.23-1,1) and moderate AST elevation at day 7 (p=0.04, OR 4,5, CI95% 1.05-19,4) were predictors of CPAP at day 7. At multivariate analysis age (p<0,001, OR 1,12, CI95% 1-1,2) and sex (p=0.01, OR 14, CI95% 1,7-116,7) were predictors of death. Mortality rate of patients with liver disease was 25%(n=3/12). CONCLUSIONS: Moderate ALT elevation at day 1 and moderate AST elevation at day 7 were respectively, predictors of DP and CPAP at day 7. For patients without respiratory failure, transaminases are not significative for anyone of our outcomes. Age, sex and CRP at day 1 are death risk factors.


2016 ◽  
Vol 1 (2) ◽  
pp. 103-109
Author(s):  
Luciano Quaranta ◽  
Ivano Riva ◽  
Francesco Oddone

Existing literature is divided on the importance of short-term intraocular pressure fluctuation as an independent factor of glaucoma development and progression. In this paper we present evidences for and against the value of 24-hour intraocular pressure fluctuation in the evaluation and prognosis of patients with glaucoma. Potential directions for future studies and the role of new instruments for continuous intraocular pressure monitoring will be presented.


2021 ◽  
Author(s):  
Keisuke Ikegami ◽  
Satoru Masubuchi

Abstract Intraocular pressure (IOP) is important in glaucoma development and depends on aqueous humor (AH) dynamics, involving inflow from the ciliary body and outflow through the trabecular meshwork (TM). IOP has a circadian rhythm entrained by sympathetic noradrenaline (NE) or adrenal glucocorticoids (GCs). Here, we investigated the involvement of GC and NE in AH outflow. Pharmacological prevention of inflow/outflow in mice indicated an AH outflow increase during day. Although TM phagocytosis can determine AH drainage, only NE showed a non-self-sustained inhibitory effect in phagocytosis of immortalized human TM cells. Pharmacological approach and RNA interference identified β1-adrenergic receptor (AR)-mediated cAMP-EPAC-SHIP1 signal activation by ablation of phosphatidylinositol triphosphate regulating phagocytic cup formation. Furthermore, pharmacological instillation in mice revealed the role of β1-AR-EPAC-SHIP1 pathway in nocturnal IOP rise. These suggest that IOP rhythm is partially regulated by this pathway. This first demonstration of TM phagocytosis suppression by NE could be useful in glaucoma management.


Sign in / Sign up

Export Citation Format

Share Document