scholarly journals In Vitro Secretome Analysis Suggests Differential Pathogenic Mechanisms between Fusarium oxysporum f. sp. cubense Race 1 and Race 4

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1353
Author(s):  
Yanqiu He ◽  
Xiaofan Zhou ◽  
Jieling Li ◽  
Huaping Li ◽  
Yunfeng Li ◽  
...  

Banana Fusarium wilt, caused by the fungus pathogen Fusarium oxysporum f. sp. cubense (Foc), is a devastating disease that causes tremendous reductions in banana yield worldwide. Secreted proteins can act as pathogenicity factors and play important roles in the Foc–banana interactions. In this study, a shotgun-based proteomic approach was employed to characterize and compare the secretomes of Foc1 and Foc4 upon banana extract treatment, which detected 1183 Foc1 and 2450 Foc4 proteins. Comprehensive in silico analyses further identified 447 Foc1 and 433 Foc4 proteins in the classical and non-classical secretion pathways, while the remaining proteins might be secreted through currently unknown mechanisms. Further analyses showed that the secretomes of Foc1 and Foc4 are similar in their overall functional characteristics and share largely conserved repertoires of CAZymes and effectors. However, we also identified a number of potentially important pathogenicity factors that are differentially present in Foc1 and Foc4, which may contribute to their different pathogenicity against banana hosts. Furthermore, our quantitative PCR analysis revealed that genes encoding secreted pathogenicity factors differ significantly between Foc1 and Foc4 in their expression regulation in response to banana extract treatment. To our knowledge, this is the first experimental secretome analysis that focused on the pathogenicity mechanism in different Foc races. The results of this study provide useful resources for further exploration of the complicated pathogenicity mechanisms in Foc.

1995 ◽  
Vol 46 (1) ◽  
pp. 167 ◽  
Author(s):  
KG Pegg ◽  
RG Shivas ◽  
NY Moore ◽  
S Bentley

A unique population of Fusarium oxysporum f. sp. cubense affecting Cavendish cv. Williams banana plants was characterized using vegetative compatibility, volatile production, RAPD-PCR analysis, pectic enzyme production and pathogenicity. The isolates were more like race 1 isolates than race 4 isolates, although they were capable of attacking Cavendish clones. The Carnarvon isolates did not belong to any of the vegetative compatibility groups (VCGs) known to occur in Australia or overseas; they belonged in the 'inodoraturn' volatile group; they had 29% genetic similarity to race 4 isolates and 76% similarity to race 1 isolates based on RAPD-PCR banding patterns; they belonged in the same pectic zymogram group as race 1 isolates and were virulent on 3-month-old Cavendish cv. Williams, Gros Michel and Pisang Gajih Merah plants in glasshouse tests.


Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1453-1464 ◽  
Author(s):  
M. Gabriela Bowden ◽  
Wei Chen ◽  
Jenny Singvall ◽  
Yi Xu ◽  
Sharon J. Peacock ◽  
...  

Staphylococcus epidermidis is a ubiquitous human skin commensal that has emerged as a major cause of foreign-body infections. Eleven genes encoding putative cell-wall-anchored proteins were identified by computer analysis of the publicly available S. epidermidis unfinished genomic sequence. Four genes encode previously described proteins (Aap, Bhp, SdrF and SdrG), while the remaining seven have not been characterized. Analysis of primary sequences of the Staphylococcus epidermidis surface (Ses) proteins indicates that they have a structural organization similar to the previously described cell-wall-anchored proteins from S. aureus and other Gram-positive cocci. However, not all of the Ses proteins are direct homologues of the S. aureus proteins. Secondary and tertiary structure predictions suggest that most of the Ses proteins are composed of several contiguous subdomains, and that the majority of these predicted subdomains are folded into β-rich structures. PCR analysis indicates that certain genes may be found more frequently in disease isolates compared to strains isolated from healthy skin. Patients recovering from S. epidermidis infections had higher antibody titres against some Ses proteins, implying that these proteins are expressed during human infection. Western blot analyses of early-logarithmic and late-stationary in vitro cultures suggest that different regulatory mechanisms control the expression of the Ses proteins.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
V. Chellappan Biju ◽  
Like Fokkens ◽  
Petra M. Houterman ◽  
Martijn Rep ◽  
Ben J. C. Cornelissen

ABSTRACT Race 1 isolates of Fusarium oxysporum f. sp. lycopersici (FOL) are characterized by the presence of AVR1 in their genomes. The product of this gene, Avr1, triggers resistance in tomato cultivars carrying resistance gene I. In FOL race 2 and race 3 isolates, AVR1 is absent, and hence they are virulent on tomato cultivars carrying I. In this study, we analyzed an approximately 100-kb genomic fragment containing the AVR1 locus of FOL race 1 isolate 004 (FOL004) and compared it to the sequenced genome of FOL race 2 isolate 4287 (FOL4287). A genomic fragment of 31 kb containing AVR1 was found to be missing in FOL4287. Further analysis suggests that race 2 evolved from race 1 by deletion of this 31-kb fragment due to a recombination event between two transposable elements bordering the fragment. A worldwide collection of 71 FOL isolates representing races 1, 2, and 3, all known vegetative compatibility groups (VCGs), and five continents was subjected to PCR analysis of the AVR1 locus, including the two bordering transposable elements. Based on phylogenetic analysis using the EF1-α gene, five evolutionary lineages for FOL that correlate well with VCGs were identified. More importantly, we show that FOL races evolved in a stepwise manner within each VCG by the loss of function of avirulence genes in a number of alternative ways. IMPORTANCE Plant-pathogenic microorganisms frequently mutate to overcome disease resistance genes that have been introduced in crops. For the fungus Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt in tomato, we have identified the nature of the mutations that have led to the overcoming of the I and I-2 resistance genes in all five known clonal lineages, which include a newly discovered lineage. Five different deletion events, at least several of which are caused by recombination between transposable elements, have led to loss of AVR1 and overcoming of I. Two new events affecting AVR2 that led to overcoming of I-2 have been identified. We propose a reconstruction of the evolution of races in FOL, in which the same mutations in AVR2 and AVR3 have occurred in different lineages and the FOL pathogenicity chromosome has been transferred to new lineages several times.


Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 721-728 ◽  
Author(s):  
T. V. Nguyen ◽  
L. T. T. Tran-Nguyen ◽  
C. L. Wright ◽  
P. Trevorrow ◽  
K. Grice

Panama disease caused by Fusarium oxysporum f. sp. cubense has devastated banana production worldwide. This work aimed to determine effective disinfectants against two races of F. oxysporum f. sp. cubense, race 1 and tropical race 4 (TR4), for implementation with on-farm biosecurity procedures against this disease following the outbreak of TR4 in North Queensland in 2015. A total of 32 commercial disinfectants were screened and their activity was assessed after ≤30 s, 5 min, 30 min, and 24 h of contact with an F. oxysporum f. sp. cubense suspension containing 105 chlamydospores/ml without and with soil added (0.05 g/ml). Of the disinfectants tested, the quaternary ammonium compounds containing ≥10% active ingredient were found to be the most effective against both F. oxysporum f. sp. cubense races. These products, when used at a 1:100 dilution, completely inhibited the survival of all F. oxysporum f. sp. cubense propagules across all the contact times regardless of the absence or presence of soil. The bioflavonoid product EvoTech 213 and bleach (10% sodium hypochlorite) used at a 1:10 dilution also eliminated all F. oxysporum f. sp. cubense propagules across all the contact times. None of the detergent-based or miscellaneous products tested were completely effective against both F. oxysporum f. sp. cubense races even used at a 1:10 dilution. Soil decreases the efficacy of disinfectants and therefore must be removed from contaminated items before treatments are applied.


2017 ◽  
Vol 7 (7) ◽  
pp. 2125-2138 ◽  
Author(s):  
Shiwen Qin ◽  
Chunyan Ji ◽  
Yunfeng Li ◽  
Zhenzhong Wang

Abstract The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the “Gros Michel” banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity.


1991 ◽  
Vol 39 (2) ◽  
pp. 161 ◽  
Author(s):  
NY Moore ◽  
PA Hargreaves ◽  
KG Pegg ◽  
JAG Irwin

The production of volatiles on steamed rice by Australian isolates of Fusarium oxysporum f. sp. cubense correlated well with race and vegetative compatibility group (VCG). All race 4 isolates (VCGs 0120, 0129) produced distinctive volatile odours which gave characteristic gas chromatograms where the num- ber of peaks equated to VCG. Race 1 (VCGs 0124, 0125) and race 2 (VCG 0128) isolates, as well as non-pathogenic isolates of F. oxysporum from the banana rhizosphere, did not produce detectable volatiles and gave chromatograms without significant peaks.


2004 ◽  
Vol 186 (10) ◽  
pp. 3143-3152 ◽  
Author(s):  
Anne-Soisig Steunou ◽  
Soufian Ouchane ◽  
Françoise Reiss-Husson ◽  
Chantal Astier

ABSTRACT The facultative phototrophic nonsulfur bacterium Rubrivivax gelatinosus exhibits several differences from other species of purple bacteria in the organization of its photosynthetic genes. In particular, the puc operon contains only the pucB and pucA genes encoding the β and α polypeptides of the light-harvesting 2 (LH2) complex. Downstream of the pucBA operon is the pucC gene in the opposite transcriptional orientation. The transcription of pucBA and pucC has been studied. No pucC transcript was detected either by Northern blotting or by reverse transcription-PCR analysis. The initiation site of pucBA transcription was determined by primer extension, and Northern blot analysis revealed the presence of two transcripts of 0.8 and 0.65 kb. The half-lives of both transcripts are longer in cells grown semiaerobically than in photosynthetically grown cells, and the small transcript is the less stable. It was reported that the α polypeptide, encoded by the pucA gene, presents a C-terminal extension which is not essential for LH2 function in vitro. The biological role of this alanine- and proline-rich C-terminal extension in vivo has been investigated. Two mutants with C-terminal deletions of 13 and 18 residues have been constructed. Both present the two pucBA transcripts, while their phenotypes are, respectively, LH2+ and LH2−, suggesting that a minimal length of the C-terminal extension is required for LH2 biogenesis. Another important factor involved in the LH2 biogenesis is the PucC protein. To gain insight into the function of this protein in R. gelatinosus, we constructed and characterized a PucC mutant. The mutant is devoid of LH2 complex under semiaerobiosis but still produces a small amount of these antennae under photosynthetic growth conditions. This conditional phenotype suggests the involvement of another factor in LH2 biogenesis.


Sign in / Sign up

Export Citation Format

Share Document