scholarly journals Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense

BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 851 ◽  
Author(s):  
Chunqiang Li ◽  
Jiaofang Shao ◽  
Yejun Wang ◽  
Wenbin Li ◽  
Dianjing Guo ◽  
...  
2017 ◽  
Vol 7 (7) ◽  
pp. 2125-2138 ◽  
Author(s):  
Shiwen Qin ◽  
Chunyan Ji ◽  
Yunfeng Li ◽  
Zhenzhong Wang

Abstract The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the “Gros Michel” banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity.


2006 ◽  
Vol 72 (2) ◽  
pp. 1667-1671 ◽  
Author(s):  
Ye Deng ◽  
Haitao Dong ◽  
Qingchao Jin ◽  
Cheng'en Dai ◽  
Yongqi Fang ◽  
...  

ABSTRACT We obtained 3,372 tentative unique transcripts (TUTs) from a cDNA library of Fusarium oxysporum. A cDNA array with 3,158 TUTs was produced to analyze gene expression profiles in conidial germination. It seems that ras and other signaling genes, e.g., ccg, cooperatively initiate conidial germination in Fusarium by increasing protein synthesis.


2018 ◽  
Vol 33 (4) ◽  
pp. 666-679 ◽  
Author(s):  
E H Ernst ◽  
S Franks ◽  
K Hardy ◽  
P Villesen ◽  
K Lykke-Hartmann

Author(s):  
Gustavo Deco ◽  
Kevin Aquino ◽  
Aurina Arnatkevičiūtė ◽  
Stuart Oldham ◽  
Kristina Sabaroedin ◽  
...  

AbstractBrain regions vary in their molecular and cellular composition, but how this heterogeneity shapes neuronal dynamics is unclear. Here, we investigate the dynamical consequences of regional heterogeneity using a biophysical model of whole-brain functional magnetic resonance imaging (MRI) dynamics in humans. We show that models in which transcriptional variations in excitatory and inhibitory receptor (E:I) gene expression constrain regional heterogeneity more accurately reproduce the spatiotemporal structure of empirical functional connectivity estimates than do models constrained by global gene expression profiles and MRI-derived estimates of myeloarchitecture. We further show that regional heterogeneity is essential for yielding both ignition-like dynamics, which are thought to support conscious processing, and a wide variance of regional activity timescales, which supports a broad dynamical range. We thus identify a key role for E:I heterogeneity in generating complex neuronal dynamics and demonstrate the viability of using transcriptional data to constrain models of large-scale brain function.


2003 ◽  
Vol 90 (10) ◽  
pp. 688-697 ◽  
Author(s):  
Andrew Filer ◽  
Ewan Ross ◽  
Margarita Bofill ◽  
Stuart Martin ◽  
Mike Salmon ◽  
...  

SummaryWe investigated the extent to which fibroblasts isolated from diverse tissues differ in their capacity to modulate inflammation by comparing the global gene expression profiles of cultured human fibroblasts from skin, acute and chronically inflamed synovium, lymph node and tonsil. The responses of these fibroblasts to TNF-α, IFN-γ and IL-4 stimulation were markedly different, as revealed by hierarchical cluster analysis and principal component analysis. In the absence of exogenous cytokine, syn-ovial and skin fibroblasts exhibited similar patterns of gene expression. However their transcriptional profiles diverged upon treatment with TNF-α.This proved to be biologically relevant, as TNF-α induced the secretion of different patterns and amounts of IL-6, IL-8 and CCL2 (MCP-1) in the two fibroblast types. Co-culture of skin or synovial fibroblasts with synovial fluid-derived mononuclear cells provided further evidence that these transcriptional differences were functionally significant in an ex vivo setting. Interestingly, the transcriptional response of skin fibroblasts to IL-4 converged with that of TNF-α-treated synovial fibroblasts, suggesting resident tissue fibroblasts and their blood-borne precursors may be imprinted by inflammatory cytokines that are characteristic of different tissues. Our data supports the concept that fibroblasts are heterogeneous, and that they contribute to the tissue-specificity of inflammatory reactions. Fibroblasts are therefore likely to play an active role in the persistence of chronic inflammatory reactions.This publication was partially financed by Serono Foundation for the Advancement of Medical Science.Part of this paper was originally presented at the 2nd International Workshop on New Therapeutic Targets in Vascular Biology from February 6-9, 2003 in Geneva, Switzerland.


Sign in / Sign up

Export Citation Format

Share Document