scholarly journals The Role of Intracellular Trafficking of Notch Receptors in Ligand-Independent Notch Activation

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1369 ◽  
Author(s):  
Judith Hounjet ◽  
Marc Vooijs

Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.

2009 ◽  
Vol 187 (3) ◽  
pp. 343-353 ◽  
Author(s):  
Kazuhide Watanabe ◽  
Tadahiro Nagaoka ◽  
Joseph M. Lee ◽  
Caterina Bianco ◽  
Monica Gonzales ◽  
...  

Nodal and Notch signaling pathways play essential roles in vertebrate development. Through a yeast two-hybrid screening, we identified Notch3 as a candidate binding partner of the Nodal coreceptor Cripto-1. Coimmunoprecipitation analysis confirmed the binding of Cripto-1 with all four mammalian Notch receptors. Deletion analyses revealed that the binding of Cripto-1 and Notch1 is mediated by the Cripto-1/FRL-1/Cryptic domain of Cripto-1 and the C-terminal region of epidermal growth factor–like repeats of Notch1. Binding of Cripto-1 to Notch1 occurred mainly in the endoplasmic reticulum–Golgi network. Cripto-1 expression resulted in the recruitment of Notch1 protein into lipid raft microdomains and enhancement of the furin-like protein convertase-mediated proteolytic maturation of Notch1 (S1 cleavage). Enhanced S1 cleavage resulted in the sensitization to ligand-induced activation of Notch signaling. In addition, knockdown of Cripto-1 expression in human and mouse embryonal carcinoma cells desensitized the ligand-induced Notch signaling activation. These results suggest a novel role of Cripto-1 in facilitating the posttranslational maturation of Notch receptors.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Wataru Saiki ◽  
Chenyu Ma ◽  
Tetsuya Okajima ◽  
Hideyuki Takeuchi

The 100th anniversary of Notch discovery in Drosophila has recently passed. The Notch is evolutionarily conserved from Drosophila to humans. The discovery of human-specific Notch genes has led to a better understanding of Notch signaling in development and diseases and will continue to stimulate further research in the future. Notch receptors are responsible for cell-to-cell signaling. They are activated by cell-surface ligands located on adjacent cells. Notch activation plays an important role in determining the fate of cells, and dysregulation of Notch signaling results in numerous human diseases. Notch receptors are primarily activated by ligand binding. Many studies in various fields including genetics, developmental biology, biochemistry, and structural biology conducted over the past two decades have revealed that the activation of the Notch receptor is regulated by unique glycan modifications. Such modifications include O-fucose, O-glucose, and O-N-acetylglucosamine (GlcNAc) on epidermal growth factor-like (EGF) repeats located consecutively in the extracellular domain of Notch receptors. Being fine-tuned by glycans is an important property of Notch receptors. In this review article, we summarize the latest findings on the regulation of Notch activation by glycosylation and discuss future challenges.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 226.3-226
Author(s):  
M. Filipović ◽  
A. Šućur ◽  
D. Flegar ◽  
Z. Jajić ◽  
M. Ikić Matijašević ◽  
...  

Background:Osteoclasts mediate periarticular and systemic bone loss in rheumatoid arthritis (RA). Osteoclast progenitor cells (OCPs) derived from the myeloid lineage are susceptible to regulation through Notch signaling. Murine bone marrow and splenic OCPs, identified as CD45+Ly6G-CD3-B220-NK1.1-CD11blo/+CD115+CCR2+ cells, are specifically increased in arthritis. We previously identified an increased frequency of OCPs expressing Notch receptors in arthritic mice.Objectives:Several studies suggested that Notch signaling modulation affects the course of experimental arthritis. We aimed to determine the effects of Notch receptor signaling inhibition on OCP activity and arthritis severity in murine collagen-induced arthritis (CIA).Methods:Male C57/Bl6 and DBA mice were immunized with chicken type II collagen and treated with i.p. injections of anti-Notch 1 neutralizing antibodies (1mg/kg). Notch receptor 1 through 4 expression on OCPs was analyzed by flow cytometry in periarticular bone marrow (PBM) and spleen (SPL). Gene expression of Notch receptors, ligands and transcription targets as well as osteoclast differentiation genes RANK, cFos and cFms was determined by qPCR from tissues and sorted OCPs. FACS sorted OCPs were stimulated by osteoclastogenic factors (M-CSF and RANKL), in control, IgG, Jagged (Jag)1 or Delta-like (DLL)1 coated wells, with or without anti-Notch 1 antibodies. Research was approved by the Ethics Committee.Results:We confirmed the expression of Notch receptors on OCPs by flow cytometry with Notch 1 and 2 being most abundantly expressed (around 25% and 40% positive OCPs in PBM and 35% and 20% in SPL respectively), with a significant increase of Notch 2 expression in arthritis. Seeding OCPs on DLL1 coated wells significantly increased while seeding on Jag1 coated wells significantly decreased osteoclastogenesis as reflected on the number of TRAP+ osteoclasts and expression of osteoclast differentiation genes. The addition of anti-Notch 1 antibodies to ligand-stimulated OCPs resulted in an increased number of TRAP+ osteoclasts, partially reversing Jag1 inhibition. In vivo treatment with anti-Notch 1 antibodies did not affect total OCP frequency, but increased expression of Notch 4 both in PBM and SPL as seen by flow cytometry and qPCR. Additionally, anti-Notch 1 treatment stimulated Notch transcription factors HES and HEY. Both PBM and SPL cultured OCPs from anti-Notch 1 treated mice produced a higher number of large TRAP+ osteoclasts, doubling the area covered with osteoclasts in the latter compared to untreated mice. Increased osteoclastogenesis in vitro was further confirmed by an increased expression of osteoclast differentiation genes in the treated group.Conclusion:Our results confirm that Notch signaling may represent an important therapeutic target for the regulation of osteoclast activity in arthritis. Both in vitro and in vivo anti-Notch 1 neutralizing antibodies enhanced osteoclastogenesis in CIA model, implying an inhibitory role of Notch 1 signaling in osteoclast differentiation. As Notch 2 expression is increased on OCPs of arthritic mice, we next plan to determine the effects of Notch 2 neutralization on osteoclast activity and arthritis severity.References:[1]Ikić Matijašević M, Flegar D, Kovačić N, Katavić V, Kelava T, Šućur A, et al. Increased chemotaxis and activity of circulatory myeloid progenitor cells may contribute to enhanced osteoclastogenesis and bone loss in the C57BL/6 mouse model of collagen-induced arthritis. Clin Exp Immunol. 2016;186(3):321–35.[2]Šućur A, Filipović M, Flegar D, Kelava T, Šisl D, Lukač N, et al. Notch receptors and ligands in inflammatory arthritis – a systematic review. Immunology Letters 2020 Vol. 223, p. 106–14.Acknowledgements:The work has been supported by Croatian Science Foundation projects IP-2018-01-2414, UIP-2017-05-1965 and DOK-2018-09-4276.Disclosure of Interests:None declared.


2015 ◽  
Vol 112 (5) ◽  
pp. E402-E409 ◽  
Author(s):  
Marcelo Boareto ◽  
Mohit Kumar Jolly ◽  
Mingyang Lu ◽  
José N. Onuchic ◽  
Cecilia Clementi ◽  
...  

Notch signaling pathway mediates cell-fate determination during embryonic development, wound healing, and tumorigenesis. This pathway is activated when the ligand Delta or the ligand Jagged of one cell interacts with the Notch receptor of its neighboring cell, releasing the Notch Intracellular Domain (NICD) that activates many downstream target genes. NICD affects ligand production asymmetrically––it represses Delta, but activates Jagged. Although the dynamical role of Notch–Jagged signaling remains elusive, it is widely recognized that Notch–Delta signaling behaves as an intercellular toggle switch, giving rise to two distinct fates that neighboring cells adopt––Sender (high ligand, low receptor) and Receiver (low ligand, high receptor). Here, we devise a specific theoretical framework that incorporates both Delta and Jagged in Notch signaling circuit to explore the functional role of Jagged in cell-fate determination. We find that the asymmetric effect of NICD renders the circuit to behave as a three-way switch, giving rise to an additional state––a hybrid Sender/Receiver (medium ligand, medium receptor). This phenotype allows neighboring cells to both send and receive signals, thereby attaining similar fates. We also show that due to the asymmetric effect of the glycosyltransferase Fringe, different outcomes are generated depending on which ligand is dominant: Delta-mediated signaling drives neighboring cells to have an opposite fate; Jagged-mediated signaling drives the cell to maintain a similar fate to that of its neighbor. We elucidate the role of Jagged in cell-fate determination and discuss its possible implications in understanding tumor–stroma cross-talk, which frequently entails Notch–Jagged communication.


2013 ◽  
Vol 210 (2) ◽  
pp. 321-337 ◽  
Author(s):  
Sankaranarayanan Kannan ◽  
Robert M. Sutphin ◽  
Mandy G. Hall ◽  
Leonard S. Golfman ◽  
Wendy Fang ◽  
...  

Although aberrant Notch activation contributes to leukemogenesis in T cells, its role in acute myelogenous leukemia (AML) remains unclear. Here, we report that human AML samples have robust expression of Notch receptors; however, Notch receptor activation and expression of downstream Notch targets are remarkably low, suggesting that Notch is present but not constitutively activated in human AML. The functional role of these Notch receptors in AML is not known. Induced activation through any of the Notch receptors (Notch1–4), or through the Notch target Hairy/Enhancer of Split 1 (HES1), consistently leads to AML growth arrest and caspase-dependent apoptosis, which are associated with B cell lymphoma 2 (BCL2) loss and enhanced p53/p21 expression. These effects were dependent on the HES1 repressor domain and were rescued through reexpression of BCL2. Importantly, activated Notch1, Notch2, and HES1 all led to inhibited AML growth in vivo, and Notch inhibition via dnMAML enhanced proliferation in vivo, thus revealing the physiological inhibition of AML growth in vivo in response to Notch signaling. As a novel therapeutic approach, we used a Notch agonist peptide that led to significant apoptosis in AML patient samples. In conclusion, we report consistent Notch-mediated growth arrest and apoptosis in human AML, and propose the development of Notch agonists as a potential therapeutic approach in AML.


2010 ◽  
Vol 298 (1) ◽  
pp. L45-L56 ◽  
Author(s):  
Keli Xu ◽  
Erica Nieuwenhuis ◽  
Brenda L. Cohen ◽  
Wei Wang ◽  
Angelo J. Canty ◽  
...  

Distal lung development occurs through coordinated induction of myofibroblasts, epithelial cells, and capillaries. Lunatic Fringe ( Lfng) is a β1–3 N-acetylglucosamine transferase that modifies Notch receptors to facilitate their activation by Delta-like (Dll1/4) ligands. Lfng is expressed in the distal lung during saccular development, and deletion of this gene impairs myofibroblast differentiation and alveogenesis in this context. A similar defect was observed in Notch2 β-geo/+ Notch3 β-geo/β-geo compound mutant mice but not in Notch2 β-geo/+ or Notch3 β-geo/β-geo single mutants. Finally, to directly test for the role of Notch signaling in myofibroblast differentiation in vivo, we used ROSA26-rtTA/+; tetO-CRE/+; RBPJκflox/flox inducible mutant mice to show that disruption of canonical Notch signaling during late embryonic development prevents induction of smooth muscle actin in mesenchymal cells of the distal lung. In sum, these results demonstrate that Lfng functions to enhance Notch signaling in myofibroblast precursor cells and thereby to coordinate differentiation and mobilization of myofibroblasts required for alveolar septation.


The Oxford Handbook of Hope provides a comprehensive overview of current knowledge regarding the science and practice of hope. Hope has long been a topic of interest to philosophers and the general public, but it was only in recent decades that hope became a focus of psychological science. Rick Snyder defined hope as a cognitive trait that helps individuals to identify and pursue goals and consists of two components: pathways, the perceived capacity to identify strategies necessary to achieve goals, and agency, the willpower or motivation to pursue those pathways to achieve goals. Hope has become one of most robust and promising topics in the burgeoning field of positive psychology. This book reviews the progress that has been made in the past 25 years regarding the origins and influence of hope. Topics covered include current theoretical perspectives on how best to define hope and how it is distinct from related constructs, current best practices for measuring and quantifying hope, interventions and strategies for promoting hope across different settings and the lifespan, the impact that hope has on many dimensions and domains of physical and mental health, and the many ways and contexts in which hope promotes resilience and positive functioning. Experts in the field both review what is currently known about the role of hope in different domains and identify topics and questions that can help to guide the next decade of research. The handbook concludes with a collaborative vision on the future directions of the science of hope.


2004 ◽  
Vol 24 (21) ◽  
pp. 9265-9273 ◽  
Author(s):  
Cheryll Sanchez-Irizarry ◽  
Andrea C. Carpenter ◽  
Andrew P. Weng ◽  
Warren S. Pear ◽  
Jon C. Aster ◽  
...  

ABSTRACT Notch proteins are transmembrane receptors that participate in a highly conserved signaling pathway that regulates morphogenesis in metazoans. Newly synthesized Notch receptors are proteolytically cleaved during transit to the cell surface, creating heterodimeric mature receptors comprising noncovalently associated extracellular (NEC) and transmembrane (NTM) subunits. Ligand binding activates Notch by inducing two successive proteolytic cleavages, catalyzed by metalloproteases and gamma-secretase, respectively, that permit the intracellular portion of NTM to translocate to the nucleus and activate transcription of target genes. Prior work has shown that the presence of NEC prevents ligand-independent activation of NTM, but the mechanisms involved are poorly understood. Here, we define the roles of two regions at the C-terminal end of NEC that participate in maintaining the integrity of resting Notch receptors through distinct mechanisms. The first region, a hydrophobic, previously uncharacterized portion of NEC, is sufficient to form stable complexes with the extracellular portion of NTM. The second region, consisting of the three Lin12/Notch repeats, is not needed for heterodimerization but acts to protect NTM from ligand-independent cleavage by metalloproteases. Together, these two contiguous regions of NEC impose crucial restraints that prevent premature Notch receptor activation.


2016 ◽  
Vol 27 (18) ◽  
pp. 2857-2866 ◽  
Author(s):  
Seth A. Johnson ◽  
Diana Zitserman ◽  
Fabrice Roegiers

The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.


Blood ◽  
2011 ◽  
Vol 117 (21) ◽  
pp. 5652-5662 ◽  
Author(s):  
David Yao ◽  
Yuanshuai Huang ◽  
Xiaoran Huang ◽  
Weihuan Wang ◽  
Quanjian Yan ◽  
...  

Abstract Notch signaling is essential for lymphocyte development and is also implicated in myelopoiesis. Notch receptors are modified by O-fucosylation catalyzed by protein O-fucosyltransferase 1 (Pofut1). Fringe enzymes add N-acetylglucosamine to O-fucose and modify Notch signaling by altering the sensitivity of Notch receptors to Notch ligands. To address physiologic functions in hematopoiesis of Notch modified by O-fucose glycans, we examined mice with inducible inactivation of Pofut1 using Mx-Cre. These mice exhibited a reduction in T lymphopoiesis and in the production of marginal-zone B cells, in addition to myeloid hyperplasia. Restoration of Notch1 signaling rescued T lymphopoiesis and the marrow myeloid hyperplasia. After marrow transfer, both cell-autonomous and environmental cues were found to contribute to lymphoid developmental defects and myeloid hyperplasia in Pofut1-deleted mice. Although Pofut1 deficiency slightly decreased cell surface expression of Notch1 and Notch2, it completely abrogated the binding of Notch receptors with Delta-like Notch ligands and suppressed downstream Notch target activation, indicating that O-fucose glycans are critical for efficient Notch-ligand binding that transduce Notch signals. The combined data support a key role for the O-fucose glycans generated by Pofut1 in Notch regulation of hematopoietic homeostasis through modulation of Notch-ligand interactions.


Sign in / Sign up

Export Citation Format

Share Document