scholarly journals Description of Joint Alterations Observed in a Family Carrying p.Asn453Ser COMP Variant: Clinical Phenotypes, In Silico Prediction of Functional Impact on COMP Protein and Stability, and Review of the Literature

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1460
Author(s):  
Quitterie Rochoux ◽  
Jana Sopkova-de Oliveira Santos ◽  
Christian Marcelli ◽  
Anne Rovelet-Lecrux ◽  
Virginie Chevallier ◽  
...  

The role of genetics in the development of osteoarthritis is well established but the molecular bases are not fully understood. Here, we describe a family carrying a germline mutation in COMP (Cartilage Oligomeric Matrix Protein) associated with three distinct phenotypes. The index case was enrolled for a familial form of idiopathic early-onset osteoarthritis. By screening potential causal genes for osteoarthritis, we identified a heterozygous missense mutation of COMP (c.1358C>T, p.Asn453Ser), absent from genome databases, located on a highly conserved residue and predicted to be deleterious. Molecular dynamics simulation suggests that the mutation destabilizes the overall COMP protein structure and consequently the calcium releases from neighboring calcium binding sites. This mutation was once reported in the literature as causal for severe multiple epiphyseal dysplasia (MED). However, no sign of dysplasia was present in the index case. The mutation was also identified in one of her brothers diagnosed with MED and secondary osteoarthritis, and in her sister affected by an atypical syndrome including peripheral inflammatory arthritis of unknown cause, without osteoarthritis nor dysplasia. This article suggests that this mutation of COMP is not only causal for idiopathic early-onset osteoarthritis or severe MED, but can also be associated to a broad phenotypic variability with always joint alterations.

2016 ◽  
Vol 310 (11) ◽  
pp. H1486-H1493 ◽  
Author(s):  
Teresa Palao ◽  
Catarina Rippe ◽  
Henk van Veen ◽  
Ed VanBavel ◽  
Karl Swärd ◽  
...  

Thrombospondin-4 (TSP-4) is a multidomain calcium-binding protein that has both intracellular and extracellular functions. As an extracellular matrix protein, it is involved in remodeling processes. Previous work showed that, in the cardiovascular system, TSP-4 expression is induced in the heart in response to experimental pressure overload and infarction injury. Intracellularly, it mediates the endoplasmic reticulum stress response in the heart. In this study, we explored the role of TSP-4 in hypertension. For this purpose, wild-type and TSP-4 knockout ( Thbs4 −/−) mice were treated with angiotensin II (ANG II). Hearts from ANG II-treated Thbs4 −/− mice showed an exaggerated hypertrophic response. Interestingly, aortas from Thbs4 −/− mice treated with ANG II showed a high incidence of aneurysms. In resistance arteries, ANG II-treated wild-type mice showed impaired endothelial-dependent relaxation. This was not observed in ANG II-treated Thbs4 −/− mice or in untreated controls. No differences were found in the passive pressure-diameter curves or stress-strain relationships, although ANG II-treated Thbs4 −/− mice showed a tendency to be less stiff, associated with thicker diameters of the collagen fibers as revealed by electron microscopy. We conclude that TSP-4 plays a role in hypertension, affecting cardiac hypertrophy, aortic aneurysm formation, as well as endothelial-dependent relaxation in resistance arteries.


Medullary thyroid cancer or MTC is present in sporadic form (75% of cases) and in familial form (25% of cases), in this latter situation, the MTC is a part of Multiple Endocrine Neoplasia type 2 (MEN 2). The MEN2 is divided into MEN2A, MEN2B and FMTC or isolated familial MTC. The MEN2 are rare hereditary disease, transmitted as an autosomal dominant mode, linked to mutations of the RET gene. The discovery of a mutation in the RET proto-oncogene by molecular biology techniques in a index case of MTC confirms the diagnosis of familial and allows the genetic testing of healthy clinically related index case: those who carry the genetic mutation, will be offered prophylactic thyroidectomy before any biological or clinical manifestation. The genetic analysis of the RET gene was performed by PCR / sequencing. The E768D mutation was found in the exon 13 of the RET gene in 2 differences sequences forms (GAG/GAC et GAG/GAT). This mutation, already described, found in the FMTC.


Author(s):  
Md. Asad Ullah ◽  
Bishajit Sarkar ◽  
Syed Sajidul Islam

AbstractEbola virus is a highly pathogenic RNA virus that causes haemorrhagic fever in human. With very high mortality rate, Ebola virus is considered as one of the dangerous viruses in the world. Although, the Ebola outbreaks claimed many lives in the past, no satisfactory treatment or vaccine have been discovered yet to fight against Ebola. For this reason, in this study, various tools of bioinformatics and immunoinformatics were used to design possible vaccines against Zaire Ebola virus strain Mayinga-76. To construct the vaccine, three potential antigenic proteins of the virus, matrix protein VP40, envelope glycoprotein and nucleoprotein were selected against which the vaccines would be designed. The MHC class-I, MHC class-II and B-cell epitopes were determined and after robust analysis through various tools and molecular docking analysis, three vaccine candidates, designated as EV-1, EV-2 and EV-3, were constructed. Since the highly conserved epitopes were used for vaccine construction, these vaccine constructs are also expected to be effective on other strains of Ebola virus like strain Gabon-94 and Kikwit-95. Next, the molecular docking study on these vaccine constructs were analyzed by molecular docking study and EV-1 emerged as the best vaccine construct. Later, molecular dynamics simulation study revealed the good performances as well as good stability of the vaccine protein. Finally, codon adaptation and in silico cloning were conducted to design a possible plasmid (pET-19b plasmid vector was used) for large scale, industrial production of the EV-1 vaccine.


2014 ◽  
Vol 20 (11) ◽  
pp. 1253-1256 ◽  
Author(s):  
Ayşegül Gündüz ◽  
Aslı Gündoğdu Eken ◽  
Başar Bilgiç ◽  
Hasmet A. Hanagasi ◽  
Kaya Bilgüvar ◽  
...  

Structure ◽  
2014 ◽  
Vol 22 (1) ◽  
pp. 136-148 ◽  
Author(s):  
Cedric Leyrat ◽  
Max Renner ◽  
Karl Harlos ◽  
Juha T. Huiskonen ◽  
Jonathan M. Grimes

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5406 ◽  
Author(s):  
Aleksander Kiełbik ◽  
Wojciech Szlasa ◽  
Olga Michel ◽  
Anna Szewczyk ◽  
Mounir Tarek ◽  
...  

Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells’ viability with and without calcium administration. For high-voltage pulses, the cell death’s mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells’ mobility.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Claudia Izzi ◽  
Elisa Delbarba ◽  
Laura Econimo ◽  
Chiara Dordoni ◽  
Gianfranco Savoldi ◽  
...  

Abstract Background and Aims Discordant affected relative-pairs are seen in ∼10% of families with Autosomal Dominant Polycystic Kidney Disease (ADPKD); <1% of patients exhibit very early onset (VEO) disease. Complex genotypes may result in renal disease variability beyond that predicted by the sole effect of a single PKD mutant allele, leading to the discovery of biallelic or digenic disease. Here we illustrate such complexity in 6 ADPKD pedigrees. Method Among our single-center ADPKD cohort (186 index patients), we selected pedigrees (P) in which marked familial phenotypic variability or severe and early onset disease was investigated by NGS and MLPA analysis of PKD1 and PKD2 genes and NGS analysis of other cystogenes. Segregation analysis by Sanger sequencing of PKD variants was performed in available affected and unaffected family members. Results In P1 and P2, the index cases (IC), presented with very early onset (VEO) disease characterized by prenatal/neonatal enlarged and hyperechogenic kidneys mimicking autosomal recessive polycystic kidney disease (ARPKD). In P1, with neonatal onset, the ADPKD affected father transmitted a PKD1 PT variant p.Gln4231*, whereas the mother, without renal cystic phenotype, transmitted a PKD1 hypomorphic variant p.Asp1332Asn. In P2, the ADPKD-PKD2 mother’s pregnancy was complicated by Potter sequence. Parent’s PKHD1 gene analysis was negative. Two missense NT variants in PKD1/PKD2 genes were detected in the healthy father, respectively p.Gly1944Arg and p.Thr203Ile. Therefore, a complex PKD inheritance was supposed in the fetus. Fetus DNA was not available. In P3 early onset (EO) ADPKD in two monozygous twins was underpinned by a PKD1 NT variant (p.Arg1951Gln) inherited by the ADPKD mild affected father and worsened by a de novo PKD1 truncating variant p.Arg2402*. In P4 and P5 a digenic ADPKD (PKD1 +PKD2 and PKD1 +PKHD1) was diagnosed in severe ADPKD IC. In P4 the two most severely affected siblings carried a PKD2 T variant (p.Ala365fs) and a PKD1 NT variant p-Cys259Tyr. In P5 the IC presented with EO ADPKD, a de novo splicing variant c.2097 + 5_+6insT in PKD1 gene was discovered but the phenotype was probably worsened by the presence of biallelic variant in a second cystogene PKHD1: one paternally inherited: p.Gly1712Arg and one maternally inherited: p.Asp3088Asn . Elderly parents in P6 had mild ADPKD with bilateral few kidney cysts and preserved eGFR, whereas IC showed moderate/severe CKD due to ADPKD biallelic variants. The IC carried a homozygous PKD1 NT variant (p.Arg4154Cys): each mutant allele inherited from the mild ADPKD affected parents. Conclusion Our study illustrates the genetic complexity in an otherwise “simple” Mendelian disorder, providing insights into the genetic basis of severity of ADPKD cases and into ADPKD intrafamilial disease variability. In our pedigree all cases with more severe clinical picture in the family presented at least two PKD variants. In P5 we found for the first time an EO ADPKD due to both PKD1 and PKHD1 variants. PKD1 and PKD2 sequence analysis together with cystic kidney disease gene panel analysis is recommended in those patients with discordant phenotype compared to family members. Molecular study of PKD patients is expected to be a good prognostic tool together with clinical and renal imaging data to better manage disease therapy, follow-up and reproductive issues.


Sign in / Sign up

Export Citation Format

Share Document