scholarly journals Cost-Effective Production of ATP and S-Adenosylmethionine Using Engineered Multidomain Scaffold Proteins

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1706
Author(s):  
Guangbo Yan ◽  
Xia Li ◽  
Jun Yang ◽  
Zhongchen Li ◽  
Jia Hou ◽  
...  

Adenosine triphosphate (ATP) and S-adenosyl-L-methionine (SAM) are important intermediates that are widely present in living organisms. Large-scale preparation and application of ATP or SAM is limited by expensive raw materials. To lower the production costs for ATP/SAM, in this study we used strategies applying engineered multidomain scaffold proteins to synthesize ATP and SAM. An artificial scaffold protein containing CBM3 domain, IM proteins and CL-labeled proteins was assembled to form complex 1 for catalytic reactions to increase ATP production. The ATP synthesis system produced approximately 25 g/L of ATP with approximately 15 g/L of ADP and 5 g/L of AMP using 12.5 g/L of adenosine and 40 g/L of sodium hexametaphosphate reaction at 35 °C and a pH of 8.5 for 6 h. Based on the above ATP synthesis system, two CL-labeled methionine adenosyltransferases (CL9-MAT4 and CL9-MAT5) were applied to construct scaffold protein complex 2 to achieve SAM synthesis. Approximately 25 μg of MAT4 in a reaction system with 0.3 M MgCl2 catalyzed at 20 °C and a pH of 8 catalyzed 0.5 g/L of l-Met to produce approximately 0.9 g/L of SAM. Approximately 25 μg of MAT5 in a reaction system with 0.7 M MgCl2 catalyzed at 35 °C and a pH of 8 catalyzed 0.5 g/L of l-Met to produce approximately 1.2 g/L of SAM. Here, we showed that low-cost substrates can be efficiently converted into high-value additional ATP and SAM via multi-enzyme catalytic reactions by engineered multidomain scaffold proteins.

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 609
Author(s):  
Nunzia Mollo ◽  
Matteo Esposito ◽  
Miriam Aurilia ◽  
Roberta Scognamiglio ◽  
Rossella Accarino ◽  
...  

Background: The presence of mitochondrial alterations in Down syndrome suggests that it might affect neuronal differentiation. We established a model of trisomic iPSCs, differentiating into neural precursor cells (NPCs) to monitor the occurrence of differentiation defects and mitochondrial dysfunction. Methods: Isogenic trisomic and euploid iPSCs were differentiated into NPCs in monolayer cultures using the dual-SMAD inhibition protocol. Expression of pluripotency and neural differentiation genes was assessed by qRT-PCR and immunofluorescence. Meta-analysis of expression data was performed on iPSCs. Mitochondrial Ca2+, reactive oxygen species (ROS) and ATP production were investigated using fluorescent probes. Oxygen consumption rate (OCR) was determined by Seahorse Analyzer. Results: NPCs at day 7 of induction uniformly expressed the differentiation markers PAX6, SOX2 and NESTIN but not the stemness marker OCT4. At day 21, trisomic NPCs expressed higher levels of typical glial differentiation genes. Expression profiles indicated that mitochondrial genes were dysregulated in trisomic iPSCs. Trisomic NPCs showed altered mitochondrial Ca2+, reduced OCR and ATP synthesis, and elevated ROS production. Conclusions: Human trisomic iPSCs can be rapidly and efficiently differentiated into NPC monolayers. The trisomic NPCs obtained exhibit greater glial-like differentiation potential than their euploid counterparts and manifest mitochondrial dysfunction as early as day 7 of neuronal differentiation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Crosino ◽  
Elisa Moscato ◽  
Marco Blangetti ◽  
Gennaro Carotenuto ◽  
Federica Spina ◽  
...  

AbstractShort chain chitooligosaccharides (COs) are chitin derivative molecules involved in plant-fungus signaling during arbuscular mycorrhizal (AM) interactions. In host plants, COs activate a symbiotic signalling pathway that regulates AM-related gene expression. Furthermore, exogenous CO application was shown to promote AM establishment, with a major interest for agricultural applications of AM fungi as biofertilizers. Currently, the main source of commercial COs is from the shrimp processing industry, but purification costs and environmental concerns limit the convenience of this approach. In an attempt to find a low cost and low impact alternative, this work aimed to isolate, characterize and test the bioactivity of COs from selected strains of phylogenetically distant filamentous fungi: Pleurotus ostreatus, Cunninghamella bertholletiae and Trichoderma viride. Our optimized protocol successfully isolated short chain COs from lyophilized fungal biomass. Fungal COs were more acetylated and displayed a higher biological activity compared to shrimp-derived COs, a feature that—alongside low production costs—opens promising perspectives for the large scale use of COs in agriculture.


2014 ◽  
Vol 1837 ◽  
pp. e25-e26
Author(s):  
Ivan Byvshev ◽  
T.N. Murugova ◽  
O.O. Ivankov ◽  
I.M. Vangeli ◽  
A.I. Kuklin ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 462
Author(s):  
Houssame Boujjat ◽  
Sylvain Rodat ◽  
Stéphane Abanades

Solar biomass gasification is an attractive pathway to promote biomass valorization while chemically storing intermittent solar energy into solar fuels. The economic feasibility of a solar gasification process at a large scale for centralized H2 production was assessed, based on the discounted cash-flow rate of return method to calculate the minimum H2 production cost. H2 production costs from solar-only, hybrid and conventional autothermal biomass gasification were evaluated under various economic scenarios. Considering a biomass reference cost of 0.1 €/kg, and a land cost of 12.9 €/m2, H2 minimum price was estimated at 2.99 €/kgH2 and 2.48 €/kgH2 for the allothermal and hybrid processes, respectively, against 2.25 €/kgH2 in the conventional process. A sensitivity study showed that a 50% reduction in the heliostats and solar tower costs, combined with a lower land cost of below 0.5 €/m2, allowed reaching an area of competitiveness where the three processes meet. Furthermore, an increase in the biomass feedstock cost by a factor of 2 to 3 significantly undermined the profitability of the autothermal process, in favor of solar hybrid and solar-only gasification. A comparative study involving other solar and non-solar processes led to conclude on the profitability of fossil-based processes. However, reduced CO2 emissions from the solar process and the application of carbon credits are definitely in favor of solar gasification economics, which could become more competitive. The massive deployment of concentrated solar energy across the world in the coming years can significantly reduce the cost of the solar materials and components (heliostats), and thus further alleviate the financial cost of solar gasification.


1996 ◽  
Vol 318 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Susan K BUCHANAN ◽  
John E. WALKER

A new chromatographic procedure has been developed for the isolation of F1Fo-ATPase and NADH:ubiquinone oxidoreductase (complex I) from a single batch of bovine heart mitochondria. The method employed dodecyl β-Δ-maltoside, a monodisperse, homogeneous detergent in which many respiratory complexes exhibit high activity, for solubilization and subsequent purification by ammonium sulphate fractionation and column chromatography. A combination of anion-exchange, gel-filtration, and dye-ligand affinity chromatography was used to purify both complexes to homogeneity. The F1Fo-ATPase preparation contains only the 16 known subunits of the enzyme. It has oligomycin-sensitive ATP hydrolysis activity and, as demonstrated elsewhere, when reconstituted into lipid vesicles it is capable of ATP-dependent proton pumping and of ATP synthesis driven by a proton gradient [Groth and Walker (1996) Biochem. J. 318, 351–357]. The complex I preparation contains all of the subunits identified in other preparations of the enzyme, and has rotenone-sensitive NADH:ubiquinone oxidoreductase and NADH:ferricyanide oxidoreductase activities. The procedure is rapid and reproducible, yielding 50–80 mg of purified F1Fo-ATPase and 20–40 mg of purified complex I from 1 g of mitochondrial membranes. Both preparations are devoid of phospholipids, and gel filtration and dynamic light scattering experiments indicate that they are monodisperse. Therefore, the preparations fulfil important prerequisites for structural analysis.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 494
Author(s):  
Riccardo Lo Bianco ◽  
Primo Proietti ◽  
Luca Regni ◽  
Tiziano Caruso

The objective of fully mechanizing olive harvesting has been pursued since the 1970s to cope with labor shortages and increasing production costs. Only in the last twenty years, after adopting super-intensive planting systems and developing appropriate straddle machines, a solution seems to have been found. The spread of super-intensive plantings, however, raises serious environmental and social concerns, mainly because of the small number of cultivars that are currently used (basically 2), compared to over 100 cultivars today cultivated on a large scale across the world. Olive growing, indeed, insists on over 11 million hectares. Despite its being located mostly in the Mediterranean countries, the numerous olive growing districts are characterized by deep differences in climate and soil and in the frequency and nature of environmental stress. To date, the olive has coped with biotic and abiotic stress thanks to the great cultivar diversity. Pending that new technologies supporting plant breeding will provide a wider number of cultivars suitable for super-intensive systems, in the short term, new growing models must be developed. New olive orchards will need to exploit cultivars currently present in various olive-growing areas and favor increasing productions that are environmentally, socially, and economically sustainable. As in fruit growing, we should focus on “pedestrian olive orchards”, based on trees with small canopies and whose top can be easily reached by people from the ground and by machines (from the side of the top) that can carry out, in a targeted way, pesticide treatments, pruning and harvesting.


Author(s):  
К.Н. Привалова ◽  
Р.Р. Каримов

Исследования по определению энергетической эффективности пастбищных систем со злаковыми и бобово-злаковыми травостоями проведены в Федеральном научном центре кормопроизводства и агроэкологии им. В. Р. Вильямса. В статье приведены результаты агроэнергетической оценки многовариантных пастбищных систем со злаковыми травостоями, созданными в 1946 году. Даны количественные показатели по сбору обменной энергии, совокупным затратам на её производство, окупаемости затрат в зависимости от системы ведения пастбищ. Изучена эффективность совокупных затрат в виде овеществлённого труда (на семена, удобрения, сельскохозяйственные машины, средства огораживания загонов и прочее) и живого труда (работы трактористов, пастухов и строителей и др.). Обоснована высокая агроэнергетическая эффективность изучаемых пастбищных систем благодаря мобилизации в продукционный процесс природных факторов, долевое участие которых в структуре производства обменной энергии составило 69–84%. Природные факторы, участвующие в продукционном процессе луговых агроэкосистем, характеризуются большим разнообразием. Это не только использование солнечной энергии и азотфиксация бобовыми травами, но и долголетие травостоев, самовозобновление фитоценозов, дерновообразовательный процесс (повышение плодородия почвы), получение дешёвого корма и улучшение здоровья животных при летнем выпасе. Роль возобновляемых природных факторов выявлена на основе балансового метода, принятого в экономике (по разнице сбора обменной энергии и антропогенных затрат). Благодаря ведущей роли природных факторов в структуре произведённой продукции агроэнергетический коэффициент окупаемости совокупных затрат антропогенной энергии (АК) за счёт сбора обменной энергии достигал 3–6 раз в среднем за 45 лет. Разработанные в результате долголетних исследований многовариантные энергосберегающие пастбищные системы обосновывают возможность рекомендовать их производству с учётом применения различного уровня энергозатрат. Ключевые слова: культурные пастбища, системы ведения, долголетние травостои, сбор обменной энергии, совокупные антропогенные затраты, окупаемость затрат. The investigation was conducted at the Federal Williams Research Center of Fodder Production and Agroecology and was aimed at testing energy efficiency of gramineous and legume-gramineous swards. This article presents the results obtained on pasture ecosystems with gramineous planted in 1946. Exchange energy yield, total production costs and economic effectiveness were analyzed. Total production costs comprised costs for seeds, fertilizers, machinery, construction materials, labor, etc. Introduction of natural factors into the production process resulted in higher energy efficiency. Their share amounted to 69–84% in the final exchange energy yield. There are a lot of natural factors that affect grass productivity such as solar energy, nitrogen-fixation, sward longevity and regeneration, soil fertility, low-cost feed production, and livestock health. The value of natural factors was determined according to the balance method (by the difference between exchange energy yield and anthropogenic costs). Since environmental factors had a leading role in the production process, the return rate raised by 3–6 times for 45 years due to exchange energy increase. Therefore, pasture ecosystems developed can be recommended for a large-scale forage production.


2008 ◽  
Vol 68 (4) ◽  
pp. 875-883 ◽  
Author(s):  
LH. Sipaúba-Tavares ◽  
AML. Pereira

Large-scale lab culture of Ankistrodesmus gracilis and Diaphanososma birgei were evaluated by studying the biology and biochemical composition of the species and production costs. Ankistrodesmus gracilis presented exponential growth until the 6th day, with approximately 144 x 10(4) cells.mL-1, followed by a sharp decrease to 90 x 10(4) cells.mL-1 (8th day). Algae cells tended to increase again from the 11th day and reached a maximum of 135 x 10(4) cells.mL-1 on the 17th day. D. birgei culture showed exponential growth until the 9th day with 140 x 10² individuals.L-1, and increased again as from the 12th day. Algae A. gracilis and zooplankton D. birgei contain 47 to 70% dry weight protein and over 5% dry weight carbohydrates. The most expensive items in the context of variable costs were labor and electricity. Data suggested that temperature, nutrients, light availability and culture management were determining factors on productivity. Results indicate that NPK (20-5-20) may be used directly as a good alternative for mass cultivation when low costs are taken into account, promoting adequate growth and nutritional value for cultured A. gracilis and D. birgei.


Author(s):  
Keiya Ishiyama ◽  
Ryo Koike ◽  
Yasuhiro Kakinuma ◽  
Tetsuya Suzuki ◽  
Takanori Mori

Additive manufacturing (AM) for metals has attracted attention from industry because of its great potential to enhance production efficiency and reduce production costs. Directed energy deposition (DED) is a metal AM process suitable to produce large-scale freeform metal products. DED entails irradiating the baseplate with a laser beam and launching the metal powder onto the molten spot to produce a metal part on the baseplate. Because the process enables powder from different materials to be used, DED is widely applicable to valuable production work such as for a dissimilar material joint, a graded material, or a part with a special structure. With regard to parts with a special structure, directional solidification can prospectively be used in the power plant and aerospace industries because it can enhance the stiffness in a specific direction via only a simple process. However, conventional approaches for directional solidification require a special mold in order to realize a long-lasting thermal gradient in the part. On the other hand, from the viewpoint of thermal distribution in a produced part, DED is able to control the gradient by controlling the position of the molten pool, i.e., the position of the laser spot. Moreover, unlike casting, the thermal gradient can be precisely oriented in the expected direction, because the laser supplies heat energy on the regulated spot. In this study, the applicability of DED to directional solidification in Inconel® 625 is theoretically and experimentally evaluated through metal structure observation and Vickers hardness measurements. Furthermore, the effect of two different cooling processes on directional solidification is also considered with the aim of improving the mechanical stiffness of a part produced by DED. The observations and experimental results show that both the cooling methods (baseplate cooling and intermittent treatment with coolant) are able to enhance the hardness while retaining the anisotropy.


2001 ◽  
Vol 280 (5) ◽  
pp. E761-E769 ◽  
Author(s):  
Kevin R. Short ◽  
Jonas Nygren ◽  
Rocco Barazzoni ◽  
James Levine ◽  
K. Sreekumaran Nair

Triiodothyronine (T3) increases O2 and nutrient flux through mitochondria (Mito) of many tissues, but it is unclear whether ATP synthesis is increased, particularly in different types of skeletal muscle, because variable changes in uncoupling proteins (UCP) and enzymes have been reported. Thus Mito ATP production was measured in oxidative and glycolytic muscles, as well as in liver and heart, in rats administered T3 for 14 days. Relative to saline-treated controls, T3 rats had 80, 168, and 62% higher ATP production in soleus muscle, liver, and heart, respectively, as well as higher activities of citrate synthase (CS; 63, 90, 25%) and cytochrome c oxidase (COX; 119, 225, 52%) in the same tissues (all P < 0.01). In plantaris muscle of T3 rats, CS was only slightly higher (17%, P < 0.05) than in controls, and ATP production and COX were unaffected. mRNA levels of COX I and III were 33 and 47% higher in soleus of T3 rats ( P < 0.01), but there were no differences in plantaris. In contrast, UCP2 and -3 mRNAs were 2.5- to 14-fold higher, and protein levels were 3- to 10-fold higher in both plantaris and soleus of the T3 group. We conclude that T3 increases oxidative enzymes and Mito ATP production and Mito-encoded transcripts in oxidative but not glycolytic rodent tissues. Despite large increases in UCP expression, ATP production was enhanced in oxidative tissues and maintained in glycolytic muscle of hyperthyroid rats.


Sign in / Sign up

Export Citation Format

Share Document