scholarly journals Canthaxanthin Biofabrication, Loading in Green Phospholipid Vesicles and Evaluation of In Vitro Protection of Cells and Promotion of Their Monolayer Regeneration

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 157
Author(s):  
Ines Castangia ◽  
Maria Letizia Manca ◽  
Seyed Hadi Razavi ◽  
Amparo Nácher ◽  
Octavio Díez-Sales ◽  
...  

In the present study, canthaxanthin was produced by biofermentation from Dietzia natronolimnaea HS-1 (D. natronolimnaea) and was loaded in phospholipid vesicles prepared with natural component using an easy and low dissipative method. Indeed, glycerosomes, hyalurosomes, and glycerohyalurosomes were prepared by direct hydration of both phosphatidylcholine and the biotechnological canthaxanthin, avoiding the use of organic solvents. Vesicles were sized from 63 nm to 87 nm and highly negatively charged. They entrapped a high number of the biomolecules and were stable on storage. Canthaxanthin-loaded vesicles incubated with fibroblasts did not affect their viability, proving to be highly biocompatible and capable of inhibiting the death of fibroblasts stressed with hydrogen peroxide. They reduced the nitric oxide expression in macrophages treated with lipopolysaccharides. Moreover, they favoured the cell migration in an in vitro lesion model. Results confirmed the health-promoting potential of canthaxanthin in skin cells, which is potentiated by its suitable loading in phospholipid vesicles, thus suggesting the possible use of these natural bioformulations in both skin protection and regeneration, thanks to the potent antioxidant, anti-inflammatory and antiageing effects of canthaxanthin.

2010 ◽  
Vol 30 (16) ◽  
pp. 4035-4044 ◽  
Author(s):  
Sara Borniquel ◽  
Nieves García-Quintáns ◽  
Inmaculada Valle ◽  
Yolanda Olmos ◽  
Brigitte Wild ◽  
...  

ABSTRACT In damaged or proliferating endothelium, production of nitric oxide (NO) from endothelial nitric oxide synthase (eNOS) is associated with elevated levels of reactive oxygen species (ROS), which are necessary for endothelial migration. We aimed to elucidate the mechanism that mediates NO induction of endothelial migration. NO downregulates expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which positively modulates several genes involved in ROS detoxification. We tested whether NO-induced cell migration requires PGC-1α downregulation and investigated the regulatory pathway involved. PGC-1α negatively regulated NO-dependent endothelial cell migration in vitro, and inactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which is activated by NO, reduced NO-mediated downregulation of PGC-1α. Expression of constitutively active Foxo3a, a target for Akt-mediated inactivation, reduced NO-dependent PGC-1α downregulation. Foxo3a is also a direct transcriptional regulator of PGC-1α, and we found that a functional FoxO binding site in the PGC-1α promoter is also a NO response element. These results show that NO-mediated downregulation of PGC-1α is necessary for NO-induced endothelial migration and that NO/protein kinase G (PKG)-dependent downregulation of PGC-1α and the ROS detoxification system in endothelial cells are mediated by the PI3K/Akt signaling pathway and subsequent inactivation of the FoxO transcription factor Foxo3a.


1996 ◽  
Vol 270 (6) ◽  
pp. L931-L940 ◽  
Author(s):  
J. Chang ◽  
N. V. Rao ◽  
B. A. Markewitz ◽  
J. R. Hoidal ◽  
J. R. Michael

Because nitric oxide is being used to treat acute lung injury and because it may either reduce or potentiate oxidant-mediated vascular injury, we studied the effect of the nitric oxide donor S-nitroso-N-acetyl-D-penicillamine (SNAP) on hydrogen peroxide (H2O2)-induced injury to cultured rat lung microvascular endothelial cells (RLMVC). Cells were exposed to H2O2 through its enzymatic generation by glucose and glucose oxidase or by its direct application. Glucose oxidase exposure causes a concentration- and time-dependent increase in 51chromium (51Cr) release from RLMVC. Catalase, dimethylthiourea or deferoxamine protects against this oxidant injury. SNAP (100 microM) prevents the increase in 51Cr release resulting from glucose oxidase or direct application of H2O2. N-acetyl-D-penicillamine is ineffective. Photo-decayed SNAP slightly decreases the 51Cr release caused by glucose oxidase but not the injury produced by directly adding H2O2. Treatment with the guanosine 3',5'-cyclic monophosphate (cGMP) analogue 8-BrcGMP (1-10 mM) provides no protection. SNAP decreases in vitro the net oxidation of ferrous to fcrric iron by H2O2, the iron-catalyzed consumption of H2O2 in Fenton's reaction, the iron-mediated generation of hydroxyl radicals, and the Fe(2+)-H2O2-catalyzed peroxidation of lipid membranes. Providing exogenous nitric oxide dramatically prevents H2O2-mediated endothelial injury, likely by reducing iron-mediated oxidant generation and subsequent lipid peroxidation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 286 ◽  
Author(s):  
Iris Usach ◽  
Elisabetta Margarucci ◽  
Maria Letizia Manca ◽  
Carla Caddeo ◽  
Matteo Aroffu ◽  
...  

Citrus species extracts are well known sources of bio-functional compounds with health-promoting effects. In particular, essential oils are known for their antibacterial activity due to the high content of terpenes. In this work, the steam-distilled essential oil from the leaves of Citrus limon var. pompia was loaded in phospholipid vesicles. The physico-chemical characteristics of the essential oil loaded vesicles were compared with those of vesicles that were loaded with citral, which is one of the most abundant terpenes of Citrus essential oils. The biocompatibility of the vesicles was assessed in vitro in human keratinocytes. Furthermore, the antimicrobial activity of the vesicles was tested while using different bacterial strains and a yeast: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans, respectively. The vesicles were small in size (~140 nm), slightly polydispersed (PI ~ 0.31), highly negatively charged (~ −73 mV), and able to incorporate high amounts of essential oil or citral (E% ~ 86%). Pompia essential oil and citral exhibited antimicrobial activity against all of the assayed microorganisms, with P. aeruginosa being the least sensitive. Citral was slightly more effective than pompia essential oil against E. coli, S. aureus, and C. albicans. The incorporation of citral in vesicles improved its antifungal activity against C. albicans.


Antioxidants ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 104
Author(s):  
Ablassé Rouamba ◽  
Moussa Compaoré ◽  
Maurice Ouédraogo ◽  
Martin Kiendrebeogo

The current study aimed to evaluate, in vitro, the antioxidant capacity and the human lymphocyte-protective effect of the ethanolic extract from Detarium microcarpum fruit pulp against oxidative stress damage. Human lymphocytes were incubated with different concentrations of extract, followed by the addition of hydrogen peroxide or tert-butyl hydroperoxide. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, the antioxidant property of the extract was evaluated in vitro using hydrogen peroxide and nitric oxide radical-scavenging assays. Compared to the vehicle, the fruit pulp ethanol extract did not exhibit a cytotoxic effect on human lymphocytes. Furthermore, the cytotoxicity of hydrogen peroxide and tert-butyl hydroperoxide to human lymphocytes was significantly reduced by fruit extract pretreatment. The extract and ascorbic acid exhibited similar cytoprotective activity (p > 0.05). The fruit pulp extract showed more antioxidant activity than gallic acid in the hydrogen peroxide-scavenging model, while in the nitric oxide-quenching model, the fruit extract and gallic acid showed similar activity. The fruit pulp of D. microcarpum contains potent antioxidant and cell-protective compounds. The use of the fruit pulp of D. microcarpum as a food supplement could rescue cellular oxidative damage responsible for numerous pathologies.


2018 ◽  
Vol 8 (6-s) ◽  
pp. 111-115
Author(s):  
Manjeet Singh ◽  
Alok Pal Jain

In the Indian ayurvedic system of medicine, Nymphaea nouchali is used for the treatment of diabetes, inflammation, liver disorders, cutaneous diseases, blenorrhagia, urinary disorders, menorrhagia, menstruation problem, as an aphrodisiac, bitter tonic, antimicrobial agent and anti antihepatotoxic effect.  The aim of the present study is to examine Nymphaea nouchali flowers for phytochemical profile, in vitro antioxidant activities. Qualitative analysis of various phytochemical constituents and quantitative analysis of total phenolics and flavonoids were determined by the well-known test protocol available in the literature. Quantitative analysis of phenolic and flavonoids was carried out by Folins Ciocalteau reagent method and aluminium chloride method respectively. The In vitro antioxidant activity of ethanolic extract of the flowers was assessed against nitric oxide, hydrogen peroxide assay using standard protocols. Phytochemical analysis revealed the presence of phenols, flavonoids, tannins, saponins, alkaloids, fixed oil and fats. The total phenolics content of flowers ethanolic extract was (18.4 mg/100mg), followed by flavonoids (12.4mg/100mg). The activities of ethanolic flowers extract against nitric oxide and hydrogen peroxide were concentration dependent with IC50 values of 68.39 and 64.54 μg/ml respectively. The present study concluded that the crude extract of Nymphaea nouchali is a potential source of natural antioxidants and this justifies its use in folkloric medicine. Keywords: Nymphaea nouchali, Phytochemical, Antioxidant, Nitric oxide, Hydrogen peroxide, Phenols, Flavonoids


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 116 ◽  
Author(s):  
Muhammad Ali-ul-Husnain Naqvi ◽  
Muhammad Ali Memon ◽  
Tahseen Jamil ◽  
Sana Zahra Naqvi ◽  
Kalibixiati Aimulajiang ◽  
...  

Galectins are glycan-binding proteins that are widely expressed and distributed in mammalian tissues as well as cells of innate and adaptive immune responses. CD4+ T-helper cells differentiate into effector subsets in response to cytokines. T helper 9 cells are one of the recently described subsets of effector T cells that are relatively new and less studied. In this study, galectin domain containing protein from Haemonchus contortus (Hc-GDC) was cloned, expressed in pET32a, and immunoblotting was performed. Localization of recombinant (r)Hc-GDC on outer and inner surface of H. contortus worm and binding with goat Peripheral Blood Mononuclear cells (PBMCs) were performed using immunofluorescence assay. Moreover, effects of rHc-GDC on proliferation, apoptosis, cell migration, and the nitric oxide production in goat PBMCs were evaluated. Furthermore, modulatory effects of rHc-GDC on production of Th1, Th2, and Th9 cells were evaluated by flowcytometry and on interferon gamma, interleukin (IL)-4 and IL-9 were evaluated by quantitative real-time polymerase chain reaction. The results demonstrated that rHc-GDC was successfully cloned, expressed in expression vector as well as in the gut surface of adult H. contortus worm and successful binding with PBMCs surface were observed. Immunoblotting results revealed that rHc-GDC is an important active protein of H. contortus excretory and secretory products. Moreover, the interaction of rHc-GDC with host cells increased the production of Th2, Th9 cells, IL4, IL-9, PBMC proliferation, nitric oxide, and cell migration. No effects of rHc-GDC were observed on PMBC apoptosis, production of Th1 cells, and secretions of IFN-γ and IL-10 cytokines. These findings indicate that recombinant GDC protein from H. contortus modulates the immune functions of goat PBMCs and has the potential to enhance protective immunity by inducing T helper-9-derived IL-9 in vitro.


2019 ◽  
Vol 10 (5) ◽  
pp. 2528-2537 ◽  
Author(s):  
Darío E. Iglesias ◽  
Silvina S. Bombicino ◽  
Alberto Boveris ◽  
Laura B. Valdez

The aim was to study thein vitroeffect of nM to low μM concentration of (+)-catechin on the enzymatic activities of mitochondrial complex I and mtNOS, as well as the consequences on the membrane potential and H2O2production rate.


Sign in / Sign up

Export Citation Format

Share Document