scholarly journals Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells

Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Intan Rosalina Suhito ◽  
Kyeong-Mo Koo ◽  
Tae-Hyung Kim

Electrochemical sensors are considered an auspicious tool to detect biomolecules (e.g., DNA, proteins, and lipids), which are valuable sources for the early diagnosis of diseases and disorders. Advances in electrochemical sensing platforms have enabled the development of a new type of biosensor, enabling label-free, non-destructive detection of viability, function, and the genetic signature of whole cells. Numerous studies have attempted to enhance both the sensitivity and selectivity of electrochemical sensors, which are the most critical parameters for assessing sensor performance. Various nanomaterials, including metal nanoparticles, carbon nanotubes, graphene and its derivatives, and metal oxide nanoparticles, have been used to improve the electrical conductivity and electrocatalytic properties of working electrodes, increasing sensor sensitivity. Further modifications have been implemented to advance sensor platform selectivity and biocompatibility using biomaterials such as antibodies, aptamers, extracellular matrix (ECM) proteins, and peptide composites. This paper summarizes recent electrochemical sensors designed to detect target biomolecules and animal cells (cancer cells and stem cells). We hope that this review will inspire researchers to increase their efforts to accelerate biosensor progress—enabling a prosperous future in regenerative medicine and the biomedical industry.

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 793
Author(s):  
Uroš Zupančič ◽  
Joshua Rainbow ◽  
Pedro Estrela ◽  
Despina Moschou

Printed circuit boards (PCBs) offer a promising platform for the development of electronics-assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical biosensors. Herein, we demonstrate the applicability of the methodology both for labelled protein (procalcitonin) and label-free nucleic acid (E. coli-specific DNA) biomarker quantification, with observed limits of detection (LoD) of 2 pM and 110 pM, respectively. The proposed optimisation of surface pre-treatment is critical in the development of robust and sensitive PCB-based electrochemical sensors for both clinical and environmental diagnostics and monitoring applications.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2577 ◽  
Author(s):  
Yuanying Liang ◽  
Ting Guo ◽  
Lei Zhou ◽  
Andreas Offenhäusser ◽  
Dirk Mayer

The detection of chemical messenger molecules, such as neurotransmitters in nervous systems, demands high sensitivity to measure small variations, selectivity to eliminate interferences from analogues, and compliant devices to be minimally invasive to soft tissue. Here, an organic electrochemical transistor (OECT) embedded in a flexible polyimide substrate is utilized as transducer to realize a highly sensitive dopamine aptasensor. A split aptamer is tethered to a gold gate electrode and the analyte binding can be detected optionally either via an amperometric or a potentiometric transducer principle. The amperometric sensor can detect dopamine with a limit of detection of 1 μM, while the novel flexible OECT-based biosensor exhibits an ultralow detection limit down to the concentration of 0.5 fM, which is lower than all previously reported electrochemical sensors for dopamine detection. The low detection limit can be attributed to the intrinsic amplification properties of OECTs. Furthermore, a significant response to dopamine inputs among interfering analogues hallmarks the selective detection capabilities of this sensor. The high sensitivity and selectivity, as well as the flexible properties of the OECT-based aptasensor, are promising features for their integration in neuronal probes for the in vitro or in vivo detection of neurochemical signals.


2020 ◽  
Author(s):  
David Maria Tobaldi ◽  
Claudia Espro ◽  
salvarore gianluca leonardi ◽  
Luc Lajaunie ◽  
Maria Paula Seabra ◽  
...  

<p>Electrochemical sensors for monitoring biochemical substances are attracting considerable attention. These devices are usually based on enzymes that are sensitive and very specific. Still, the activity of those enzymes is lost with changes in temperature or pH. Non-enzymatic electrochemical sensors – fabricated <i>via</i> the modification of the electrode surface with metal oxide nanoparticles – are a judicious answer. In this study, we investigated the photo-electrochemical properties of CuO–TiO<sub>2</sub> heterojunctions for glucose sensing in alkaline media. A combination of high-resolution (scanning) transmission electron microscopy, spatially resolved electron energy-loss spectroscopy, energy-dispersive X-ray spectroscopy and X-ray powder diffraction, was used to study in detail the microstructures of the prepared specimens. These results highlighted the strong intertwining between the TiO<sub>2</sub> nanoparticles and the Cu-based nanoparticles, which present a metallic core with a CuO rich surface. In addition, we showed that CuO, joint to TiO<sub>2</sub>, has smaller size compared to pure CuO, which entails larger surface area available for the glucose electro-oxidation, which consequently enhanced the electrochemical features. The influence of Cu loading over the sensing performance of TiO<sub>2</sub> was examined in detail carrying out electrochemical sensing tests under dark, laboratory and halogen lamp irradiation. Results demonstrated that, under halogen lamp irradiation, modified CuO–TiO<sub>2</sub> electrodes showed a higher specific response signal than that of pure CuO. Those increased photo-electrochemical properties in CuO–TiO<sub>2</sub> heterojunctions are likely due to a synergistic effect between the microstructural characteristics and effective separation of photo-generated exciton created at the heterojunction interface. Results of this study offer applicable guidelines for designing photo-electrochemical screen-printed electrodes based on nano-sized CuO on titania for an efficient detection of glucose.</p>


Electrochem ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 490-519
Author(s):  
Murilo H. M. Facure ◽  
Rodrigo Schneider ◽  
Jessica B. S. Lima ◽  
Luiza A. Mercante ◽  
Daniel S. Correa

Graphene quantum dots (GQDs) have been widely investigated in recent years due to their outstanding physicochemical properties. Their remarkable characteristics allied to their capability of being easily synthesized and combined with other materials have allowed their use as electrochemical sensing platforms. In this work, we survey recent applications of GQDs-based nanocomposites in electrochemical sensors and biosensors. Firstly, the main characteristics and synthesis methods of GQDs are addressed. Next, the strategies generally used to obtain the GQDs nanocomposites are discussed. Emphasis is given on the applications of GQDs combined with distinct 0D, 1D, 2D nanomaterials, metal-organic frameworks (MOFs), molecularly imprinted polymers (MIPs), ionic liquids, as well as other types of materials, in varied electrochemical sensors and biosensors for detecting analytes of environmental, medical, and agricultural interest. We also discuss the current trends and challenges towards real applications of GQDs in electrochemical sensors.


2022 ◽  
Vol 189 (2) ◽  
Author(s):  
Silvia Dortez ◽  
Tania Sierra ◽  
Miguel Á. Álvarez-Sánchez ◽  
José M. González-Domínguez ◽  
Ana M. Benito ◽  
...  

Abstract Two cellulose nanocrystals/single-walled carbon nanotube (CNC/SW) hybrids, using two cellulose polymorphs, were evaluated as electrochemical transducers: CNC type I (CNC-I/SW) and CNC type II (CNC-II/SW). They were synthesized and fully characterized, and their analytical performance as electrochemical sensors was carefully studied. In comparison with SWCNT-based and screen-printed carbon electrodes, CNC/SW sensors showed superior electroanalytical performance in terms of sensitivity and selectivity, not only in the detection of small metabolites (uric acid, dopamine, and tyrosine) but also in the detection of complex glycoproteins (alpha-1-acid glycoprotein (AGP)). More importantly, CNC-II/SW exhibited 20 times higher sensitivity than CNC-I/SW for AGP determination, yielding a LOD of 7 mg L−1.These results demonstrate the critical role played by nanocellulose polymorphism in the electrochemical performance of CNC/SW hybrid materials, opening new directions in the electrochemical sensing of these complex molecules. In general, these high-active-surface hybrids smartly exploited the preserved non-oxidized SW conductivity with the high aqueous dispersibility of the CNC, avoiding the use of organic solvents or the incorporation of toxic surfactants during their processing, making the CNC/SW hybrids promising nanomaterials for electrochemical detection following greener approaches. Graphical abstract


This work figures the conceptual background of impedimetric measurements. Impedance measurement is a convenient approach for exploring the change in electrical behavior of diverse materials. An overview of in practice impedance analysis on CHI660D electrochemical work station is presented. Detection of microorganism causing foodborne diseases using IDE and other methods, toxic metal ion quantification, environment pollutant monitoring are described applications in this work. This work also reviewed the noticeable development in impedance measurement devices based on AD5933 such as bio-impedance measurement and explosive material detection. Biological signals are detected by transducing them into electrical analogy, detection of which is not a big issue. The main challenges are to convert biological signal into electrical information. Electrochemical sensors present captivating techniques to determine the content of sample under test. Electrochemical sensing platforms come up with an appealing methodology to interpret the concentration of biological sample as these sensors directly translate biological information to an electronic one. Huge amount of sensing platforms and corresponding devices has been developed. EIS is a rapid and easily computerized technique used to characterize biomolecules, inorganic materials, having a wide range of applications. The measured impedance spectra are generally fitted to an analogous electrical circuit model which constitutes an electrical documentation of the SUT by disclosing its behavior and properties. Quick, highly selective/specific and sensitive techniques to quantify biological and biochemical molecules and other target species are of great importance in biomedical and biotechnological application. Recent developments trends for handy, portable, fast and precise impedance analyzer is discussed. AD5933 evolution kit is reviewed.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5759
Author(s):  
Antonella Curulli

Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.


2020 ◽  
Author(s):  
David Maria Tobaldi ◽  
Claudia Espro ◽  
salvarore gianluca leonardi ◽  
Luc Lajaunie ◽  
Maria Paula Seabra ◽  
...  

<p>Electrochemical sensors for monitoring biochemical substances are attracting considerable attention. These devices are usually based on enzymes that are sensitive and very specific. Still, the activity of those enzymes is lost with changes in temperature or pH. Non-enzymatic electrochemical sensors – fabricated <i>via</i> the modification of the electrode surface with metal oxide nanoparticles – are a judicious answer. In this study, we investigated the photo-electrochemical properties of CuO–TiO<sub>2</sub> heterojunctions for glucose sensing in alkaline media. A combination of high-resolution (scanning) transmission electron microscopy, spatially resolved electron energy-loss spectroscopy, energy-dispersive X-ray spectroscopy and X-ray powder diffraction, was used to study in detail the microstructures of the prepared specimens. These results highlighted the strong intertwining between the TiO<sub>2</sub> nanoparticles and the Cu-based nanoparticles, which present a metallic core with a CuO rich surface. In addition, we showed that CuO, joint to TiO<sub>2</sub>, has smaller size compared to pure CuO, which entails larger surface area available for the glucose electro-oxidation, which consequently enhanced the electrochemical features. The influence of Cu loading over the sensing performance of TiO<sub>2</sub> was examined in detail carrying out electrochemical sensing tests under dark, laboratory and halogen lamp irradiation. Results demonstrated that, under halogen lamp irradiation, modified CuO–TiO<sub>2</sub> electrodes showed a higher specific response signal than that of pure CuO. Those increased photo-electrochemical properties in CuO–TiO<sub>2</sub> heterojunctions are likely due to a synergistic effect between the microstructural characteristics and effective separation of photo-generated exciton created at the heterojunction interface. Results of this study offer applicable guidelines for designing photo-electrochemical screen-printed electrodes based on nano-sized CuO on titania for an efficient detection of glucose.</p>


2003 ◽  
Vol 773 ◽  
Author(s):  
Myung-Il Park ◽  
Jonging Hong ◽  
Dae Sung Yoon ◽  
Chong-Ook Park ◽  
Geunbae Im

AbstractThe large optical detection systems that are typically utilized at present may not be able to reach their full potential as portable analysis tools. Accurate, early, and fast diagnosis for many diseases requires the direct detection of biomolecules such as DNA, proteins, and cells. In this research, a glass microchip with integrated microelectrodes has been fabricated, and the performance of electrochemical impedance detection was investigated for the biomolecules. We have used label-free λ-DNA as a sample biomolecule. By changing the distance between microelectrodes, the significant difference between DW and the TE buffer solution is obtained from the impedance-frequency measurements. In addition, the comparison for the impedance magnitude of DW, the TE buffer, and λ-DNA at the same distance was analyzed.


The Analyst ◽  
2021 ◽  
Author(s):  
Ruirui Zhao ◽  
Lu Zhao ◽  
Haidi Feng ◽  
Xiaoliang Chen ◽  
Huilin Zhang ◽  
...  

Fluorescence sensing platforms based on HCR and G-quadruplex DNAzyme amplification strategies for the detection of prostate-specific antigen.


Sign in / Sign up

Export Citation Format

Share Document