scholarly journals Cell-Based Therapies for Traumatic Brain Injury: Therapeutic Treatments and Clinical Trials

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 669
Author(s):  
Celia Bonilla ◽  
Mercedes Zurita

Traumatic brain injury (TBI) represents physical damage to the brain tissue that induces transitory or permanent neurological disabilities. TBI contributes to 50% of all trauma deaths, with many enduring long-term consequences and significant medical and rehabilitation costs. There is currently no therapy to reverse the effects associated with TBI. An increasing amount of research has been undertaken regarding the use of different stem cells (SCs) to treat the consequences of brain damage. Neural stem cells (NSCs) (adult and embryonic) and mesenchymal stromal cells (MSCs) have shown efficacy in pre-clinical models of TBI and in their introduction to clinical research. The purpose of this review is to provide an overview of TBI and the state of clinical trials aimed at evaluating the use of stem cell-based therapies in TBI. The primary aim of these studies is to investigate the safety and efficacy of the use of SCs to treat this disease. Although an increasing number of studies are being carried out, few results are currently available. In addition, we present our research regarding the use of cell therapy in TBI. There is still a significant lack of understanding regarding the cell therapy mechanisms for the treatment of TBI. Thus, future studies are needed to evaluate the feasibility of the transplantation of SCs in TBI.

Medicina ◽  
2020 ◽  
Vol 56 (3) ◽  
pp. 137 ◽  
Author(s):  
Giovanni Schepici ◽  
Serena Silvestro ◽  
Placido Bramanti ◽  
Emanuela Mazzon

Traumatic brain injury represents physical damage to the brain tissue that induces transitory or permanent neurological disabilities. The traumatic injury activates an important inflammatory response, followed by a cascade of events that lead to neuronal loss and further brain damage. Maintaining proper ventilation, a normal level of oxygenation, and adequate blood pressure are the main therapeutic strategies performed after injury. Surgery is often necessary for patients with more serious injuries. However, to date, there are no therapies that completely resolve the brain damage suffered following the trauma. Stem cells, due to their capacity to differentiate into neuronal cells and through releasing neurotrophic factors, seem to be a valid strategy to use in the treatment of traumatic brain injury. The purpose of this review is to provide an overview of clinical trials, aimed to evaluate the use of stem cell-based therapy in traumatic brain injury. These studies aim to assess the safety and efficacy of stem cells in this disease. The results available so far are few; therefore, future studies need in order to evaluate the safety and efficacy of stem cell transplantation in traumatic brain injury.


2008 ◽  
Vol 24 (3-4) ◽  
pp. E18 ◽  
Author(s):  
Matthew T. Harting ◽  
James E. Baumgartner ◽  
Laura L. Worth ◽  
Linda Ewing-Cobbs ◽  
Adrian P. Gee ◽  
...  

Preliminary discoveries of the efficacy of cell therapy are currently being translated to clinical trials. Whereas a significant amount of work has been focused on cell therapy applications for a wide array of diseases, including cardiac disease, bone disease, hepatic disease, and cancer, there continues to be extraordinary anticipation that stem cells will advance the current therapeutic regimen for acute neurological disease. Traumatic brain injury is a devastating event for which current therapies are limited. In this report the authors discuss the current status of using adult stem cells to treat traumatic brain injury, including the basic cell types and potential mechanisms of action, preclinical data, and the initiation of clinical trials.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Huazhen Chen ◽  
Karl Kevala ◽  
Elma Aflaki ◽  
Juan Marugan ◽  
Hee-Yong Kim

Abstract Background Repetitive mild traumatic brain injury (mTBI) can result in chronic visual dysfunction. G-protein receptor 110 (GPR110, ADGRF1) is the target receptor of N-docosahexaenoylethanolamine (synaptamide) mediating the anti-neuroinflammatory function of synaptamide. In this study, we evaluated the effect of an endogenous and a synthetic ligand of GPR110, synaptamide and (4Z,7Z,10Z,13Z,16Z,19Z)-N-(2-hydroxy-2-methylpropyl) docosa-4,7,10,13,16,19-hexaenamide (dimethylsynaptamide, A8), on the mTBI-induced long-term optic tract histopathology and visual dysfunction using Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), a clinically relevant model of mTBI. Methods The brain injury in wild-type (WT) and GPR110 knockout (KO) mice was induced by CHIMERA applied daily for 3 days, and GPR110 ligands were intraperitoneally injected immediately following each impact. The expression of GPR110 and proinflammatory mediator tumor necrosis factor (TNF) in the brain was measured by using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in an acute phase. Chronic inflammatory responses in the optic tract and visual dysfunction were assessed by immunostaining for Iba-1 and GFAP and visual evoked potential (VEP), respectively. The effect of GPR110 ligands in vitro was evaluated by the cyclic adenosine monophosphate (cAMP) production in primary microglia isolated from adult WT or KO mouse brains. Results CHIMERA injury acutely upregulated the GPR110 and TNF gene level in mouse brain. Repetitive CHIMERA (rCHIMERA) increased the GFAP and Iba-1 immunostaining of glia cells and silver staining of degenerating axons in the optic tract with significant reduction of N1 amplitude of visual evoked potential at up to 3.5 months after injury. Both GPR110 ligands dose- and GPR110-dependently increased cAMP in cultured primary microglia with A8, a ligand with improved stability, being more effective than synaptamide. Intraperitoneal injection of A8 at 1 mg/kg or synaptamide at 5 mg/kg significantly reduced the acute expression of TNF mRNA in the brain and ameliorated chronic optic tract microgliosis, astrogliosis, and axonal degeneration as well as visual deficit caused by injury in WT but not in GPR110 KO mice. Conclusion Our data demonstrate that ligand-induced activation of the GPR110/cAMP system upregulated after injury ameliorates the long-term optic tract histopathology and visual impairment caused by rCHIMERA. Based on the anti-inflammatory nature of GPR110 activation, we suggest that GPR110 ligands may have therapeutic potential for chronic visual dysfunction associated with mTBI.


2021 ◽  
Author(s):  
Lianxu Cui ◽  
Yasmeen Saeed ◽  
Haomin Li ◽  
Jingli Yang

Traumatic brain injury (TBI) is a serious health concern, yet there is a lack of standardized treatment to combat its long-lasting effects. The objective of the present study was to provide an overview of the limitation of conventional stem cell therapy in the treatment of TBI and to discuss the application of novel acellular therapies and their advanced strategies to enhance the efficacy of stem cells derived therapies in the light of published study data. Moreover, we also discussed the factor to optimize the therapeutic efficiency of stem cell-derived acellular therapy by overcoming the challenges for its clinical translation. Hence, we concluded that acellular therapy possesses the potential to bring a breakthrough in the field of regenerative medicine to treat TBI.


2021 ◽  
Vol 28 ◽  
Author(s):  
Lucas Alexandre Santos Marzano ◽  
Fabyolla Lúcia Macedo de Castro ◽  
Caroline Amaral Machado ◽  
João Luís Vieira Monteiro de Barros ◽  
Thiago Macedo e Cordeiro ◽  
...  

: Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI’s long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.


2020 ◽  
Author(s):  
Anna Badner ◽  
Emily K. Reinhardt ◽  
Theodore V. Nguyen ◽  
Nicole Midani ◽  
Andrew T. Marshall ◽  
...  

AbstractHuman neural stem cells (hNSCs) have potential as a cell therapy following traumatic brain injury (TBI). While various studies have demonstrated the efficacy of NSCs from on-going culture, there is a significant gap in our understanding of freshly thawed cells from cryobanked stocks – a more clinically-relevant source. To address these shortfalls, the therapeutic potential of our previously validated Shef-6.0 human embryonic stem cell (hESC)-derived hNSC line was tested following long-term cryostorage and thawing prior to transplant. Immunodeficient athymic nude rats received a moderate unilateral controlled cortical impact (CCI) injury. At 4-weeks post-injury, 6×105 freshly thawed hNSCs were transplanted into six injection sites (2 ipsi- and 4 contra-lateral) with 53.4% of cells surviving three months post-transplant. Interestingly, most hNSCs were engrafted in the meninges and the lining of lateral ventricles, associated with high CXCR4 expression and a chemotactic response to SDF1alpha (CXCL12). While some expressed markers of neuron, astrocyte, and oligodendrocyte lineages, the majority remained progenitors, identified through doublecortin expression (78.1%). Importantly, transplantation resulted in improved spatial learning and memory in Morris water maze navigation and reduced risk-taking behavior in an elevated plus maze. Investigating potential mechanisms of action, we identified an increase in ipsilateral host hippocampus cornu ammonis (CA) neuron survival, contralateral dentate gyrus (DG) volume and DG neural progenitor morphology as well as a reduction in neuroinflammation. Together, these findings validate the potential of hNSCs to restore function after TBI and demonstrate that long-term bio-banking of cells and thawing aliquots prior to use may be suitable for clinical deployment.Significance StatementThere is no cure for chronic traumatic brain injury (TBI). While human neural stem cells (hNSCs) offer a potential treatment, no one has demonstrated efficacy of thawed hNSCs from long-term cryobanked stocks. Frozen aliquots are critical for multisite clinical trials, as this omission impacted the use of MSCs for graft versus host disease. This is the first study to demonstrate the efficacy of thawed hNSCs, while also providing support for novel mechanisms of action – linking meningeal and ventricular engraftment to reduced neuroinflammation and improved hippocampal neurogenesis. Importantly, these changes also led to clinically relevant effects on spatial learning/memory and risk-taking behavior. Together, this new understanding of hNSCs lays a foundation for future work and improved opportunities for patient care.


2020 ◽  
Vol 22 (3) ◽  
pp. 286-305 ◽  
Author(s):  
Shuai Zhang ◽  
Brittany Bolduc Lachance ◽  
Bilal Moiz ◽  
Xiaofeng Jia

Stem cells have been used for regenerative and therapeutic purposes in a variety of diseases. In ischemic brain injury, preclinical studies have been promising, but have failed to translate results to clinical trials. We aimed to explore the application of stem cells after ischemic brain injury by focusing on topics such as delivery routes, regeneration efficacy, adverse effects, and in vivo potential optimization. PUBMED and Web of Science were searched for the latest studies examining stem cell therapy applications in ischemic brain injury, particularly after stroke or cardiac arrest, with a focus on studies addressing delivery optimization, stem cell type comparison, or translational aspects. Other studies providing further understanding or potential contributions to ischemic brain injury treatment were also included. Multiple stem cell types have been investigated in ischemic brain injury treatment, with a strong literature base in the treatment of stroke. Studies have suggested that stem cell administration after ischemic brain injury exerts paracrine effects via growth factor release, blood-brain barrier integrity protection, and allows for exosome release for ischemic injury mitigation. To date, limited studies have investigated these therapeutic mechanisms in the setting of cardiac arrest or therapeutic hypothermia. Several delivery modalities are available, each with limitations regarding invasiveness and safety outcomes. Intranasal delivery presents a potentially improved mechanism, and hypoxic conditioning offers a potential stem cell therapy optimization strategy for ischemic brain injury. The use of stem cells to treat ischemic brain injury in clinical trials is in its early phase; however, increasing preclinical evidence suggests that stem cells can contribute to the down-regulation of inflammatory phenotypes and regeneration following injury. The safety and the tolerability profile of stem cells have been confirmed, and their potent therapeutic effects make them powerful therapeutic agents for ischemic brain injury patients.


2015 ◽  
Vol 148 (4) ◽  
pp. S-384
Author(s):  
Elise L. Ma ◽  
Allen Smith ◽  
Neemesh Desai ◽  
Alan Faden ◽  
Terez Shea-Donohue

2019 ◽  
Vol 20 (24) ◽  
pp. 6125 ◽  
Author(s):  
Ning Liu ◽  
Yinghua Jiang ◽  
Joon Yong Chung ◽  
Yadan Li ◽  
Zhanyang Yu ◽  
...  

Our laboratory and others previously showed that Annexin A2 knockout (A2KO) mice had impaired blood–brain barrier (BBB) development and elevated pro-inflammatory response in macrophages, implying that Annexin A2 (AnxA2) might be one of the key endogenous factors for maintaining homeostasis of the neurovascular unit in the brain. Traumatic brain injury (TBI) is an important cause of disability and mortality worldwide, and neurovascular inflammation plays an important role in the TBI pathophysiology. In the present study, we aimed to test the hypothesis that A2KO promotes pro-inflammatory response in the brain and worsens neurobehavioral outcomes after TBI. TBI was conducted by a controlled cortical impact (CCI) device in mice. Our experimental results showed AnxA2 expression was significantly up-regulated in response to TBI at day three post-TBI. We also found more production of pro-inflammatory cytokines in the A2KO mouse brain, while there was a significant increase of inflammatory adhesion molecules mRNA expression in isolated cerebral micro-vessels of A2KO mice compared with wild-type (WT) mice. Consistently, the A2KO mice brains had a significant increase in leukocyte brain infiltration at two days after TBI. Importantly, A2KO mice had significantly worse sensorimotor and cognitive function deficits up to 28 days after TBI and significantly larger brain tissue loss. Therefore, these results suggested that AnxA2 deficiency results in exacerbated early neurovascular pro-inflammation, which leads to a worse long-term neurologic outcome after TBI.


Author(s):  
Mari A. Allison ◽  
Yun Seok Kang ◽  
Matthew R. Maltese ◽  
John H. Bolte ◽  
Kristy B. Arbogast

Recent studies have shown that mild traumatic brain injury (mTBI) can have long-term neurological consequences and may cause permanent damage to the brain [1,2]. Given estimates that millions of these injuries occur each year [3], this knowledge has created a demand for countermeasures to prevent mTBI. In order to create countermeasures, the biomechanical inputs leading to mTBI, which are still a matter of debate, must be better understood in both children and adults.


Sign in / Sign up

Export Citation Format

Share Document