scholarly journals Ferroptosis as a Major Factor and Therapeutic Target for Neuroinflammation in Parkinson’s Disease

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1679
Author(s):  
Chih-Jan Ko ◽  
Shih-Ling Gao ◽  
Tsu-Kung Lin ◽  
Pei-Yi Chu ◽  
Hung-Yu Lin

Mounting evidence suggests that ferroptosis is not just a consequence but also a fundamental contributor to the development and progression of Parkinson’s disease (PD). Ferroptosis is characterized as iron-dependent regulated cell death caused by excessive lipid peroxidation, leading to plasma membrane rupture, release of damage-associated molecular patterns, and neuroinflammation. Due to the crucial role of intracellular iron in mediating the production of reactive oxygen species and the formation of lipid peroxides, ferroptosis is intimately controlled by regulators involved in many aspects of iron metabolism, including iron uptake, storage and export, and by pathways constituting the antioxidant systems. Translational and transcriptional regulation of iron homeostasis and redox status provide an integrated network to determine the sensitivity of ferroptosis. We herein review recent advances related to ferroptosis, ranging from fundamental mechanistic discoveries and cutting-edge preclinical animal studies, to clinical trials in PD and the regulation of neuroinflammation via ferroptosis pathways. Elucidating the roles of ferroptosis in the survival of dopaminergic neurons and microglial activity can enhance our understanding of the pathogenesis of PD and provide opportunities for the development of novel prevention and treatment strategies.

Author(s):  
Mohammad Zamanian ◽  
Małgorzata Kujawska ◽  
Marjan Nikbakht Zadeh ◽  
Amin Hassanshahi ◽  
Soudeh Ramezanpour ◽  
...  

Background & objective: Neurological diseases are becoming a significant problem worldwide, with the elderly at a higher risk of being affected. Several researchers have investigated the neuroprotective effects of Carvacrol (CAR) (5-isopropyl-2-methyl phenol). This review systematically surveys the existing literature on the impact of CAR when used as a neuroprotective agent in neurological diseases. Methods: The systematic review involved English articles published in the last ten years obtained from PubMed, Google Scholar, and Scopus databases. The following descriptors were used to search the literature: “Carvacrol” [Title] AND “neuroprotective (neuroprotection)” [Title] OR “stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, seizure, epilepsy [Title]. Results: : A total of 208 articles were retrieved during the search process, but only 20 studies met the eligibility criteria and were included for review. A total of 20 articles were identified, in which the efficacy of CAR was described in experimental models of stroke, traumatic brain injury, Parkinson’s disease, Alzheimer’s disease, , epilepsy, and seizure, through motor deficits improvements in neurochemical activity, especially antioxidant systems, reducing inflammation, oxidative stress and apoptosis as well as inhibition of TRPC1 and TRPM7. Conclusion : The data presented in this study support the beneficial impact of CAR on behavioural and neurochemical deficits. CAR benefits accrue because of its anti-apoptotic, antioxidant, and anti-inflammatory properties. Therefore, CAR has emerged as an alternative treatment for neurological disorders based on its properties.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kyota Fujita ◽  
Yusaku Nakabeppu ◽  
Mami Noda

Since the first description of Parkinson's disease (PD) nearly two centuries ago, a number of studies have revealed the clinical symptoms, pathology, and therapeutic approaches to overcome this intractable neurodegenerative disease. 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) are neurotoxins which produce Parkinsonian pathology. From the animal studies using these neurotoxins, it has become well established that oxidative stress is a primary cause of, and essential for, cellular apoptosis in dopaminergic neurons. Here, we describe the mechanism whereby oxidative stress evokes irreversible cell death, and propose a novel therapeutic strategy for PD using molecular hydrogen. Hydrogen has an ability to reduce oxidative damage and ameliorate the loss of nigrostriatal dopaminergic neuronal pathway in two experimental animal models. Thus, it is strongly suggested that hydrogen might provide a great advantage to prevent or minimize the onset and progression of PD.


2020 ◽  
Vol 26 (6) ◽  
pp. 333-342 ◽  
Author(s):  
Shoned Jones ◽  
Kelli M. Torsney ◽  
Lily Scourfield ◽  
Katie Berryman ◽  
Emily J. Henderson

SUMMARYHistorically, Parkinson's disease was viewed as a motor disorder and it is only in recent years that the spectrum of non-motor disorders associated with the condition has been fully recognised. There is a broad scope of neuropsychiatric manifestations, including depression, anxiety, apathy, psychosis and cognitive impairment. Patients are more predisposed to delirium, and Parkinson's disease treatments give rise to specific syndromes, including impulse control disorders, dopamine agonist withdrawal syndrome and dopamine dysregulation syndrome. This article gives a broad overview of the spectrum of these conditions, describes the association with severity of Parkinson's disease and the degree to which dopaminergic degeneration and/or treatment influence symptoms. We highlight useful assessment scales that inform diagnosis and current treatment strategies to ameliorate these troublesome symptoms, which frequently negatively affect quality of life.


Author(s):  
Hayrettin Ozan Gulcan

: Similar to other neurodegenerative diseases, Parkinson’s disease (PD) has been extensively investigated with respect to its neuropathological background and possible treatment options. Since the symptomatic outcomes are generally related to dopamine deficiency, the current treatment strategies towards PD mainly employ dopaminergic agonists as well as the compounds acting on dopamine metabolism. These drugs do not provide disease modifying properties; therefore alternative drug discovery studies focus on targets involved in the progressive neurodegenerative character of PD. This study has aimed to present the pathophysiology of PD concomitant to the representation of drugs and promising molecules displaying activity against the validated and non-validated targets of PD.


2019 ◽  
Vol 32 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Lauren K. Murray ◽  
Nafisa M. Jadavji

AbstractParkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterised by the progressive degeneration of dopaminergic (DA) neurons. The cause of degeneration is not well understood; however, both genetics and environmental factors, such as nutrition, have been implicated in the disease process. Deficiencies in one-carbon metabolism in particular have been associated with increased risk for PD onset and progression, though the precise relationship is unclear. The aim of the present review is to determine the role of one-carbon metabolism and elevated levels of homocysteine in PD onset and pathology and to identify potential mechanisms involved. A search of PubMed, Google Scholar and Web of Science was undertaken to identify relevant human and animal studies. Case–control, prospective cohort studies, meta-analyses and non-randomised trials were included in the present review. The results from human studies indicate that polymorphisms in one-carbon metabolism may increase risk for PD development. There is an unclear role for dietary B-vitamin intake on PD onset and progression. However, dietary supplementation with B-vitamins may be beneficial for PD-affected individuals, particularly those on l-DOPA (levodopa or l-3,4-dihydroxyphenylalanine) treatment. Additionally, one-carbon metabolism generates methyl groups, and methylation capacity in PD-affected individuals is reduced. This reduced capacity has an impact on expression of disease-specific genes that may be involved in PD progression. During B-vitamin deficiency, animal studies report increased vulnerability of DA cells through increased oxidative stress and altered methylation. Nutrition, especially folates and related B-vitamins, may contribute to the onset and progression of PD by making the brain more vulnerable to damage; however, further investigation is required.


Sign in / Sign up

Export Citation Format

Share Document