The role of one-carbon metabolism and homocysteine in Parkinson’s disease onset, pathology and mechanisms

2019 ◽  
Vol 32 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Lauren K. Murray ◽  
Nafisa M. Jadavji

AbstractParkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterised by the progressive degeneration of dopaminergic (DA) neurons. The cause of degeneration is not well understood; however, both genetics and environmental factors, such as nutrition, have been implicated in the disease process. Deficiencies in one-carbon metabolism in particular have been associated with increased risk for PD onset and progression, though the precise relationship is unclear. The aim of the present review is to determine the role of one-carbon metabolism and elevated levels of homocysteine in PD onset and pathology and to identify potential mechanisms involved. A search of PubMed, Google Scholar and Web of Science was undertaken to identify relevant human and animal studies. Case–control, prospective cohort studies, meta-analyses and non-randomised trials were included in the present review. The results from human studies indicate that polymorphisms in one-carbon metabolism may increase risk for PD development. There is an unclear role for dietary B-vitamin intake on PD onset and progression. However, dietary supplementation with B-vitamins may be beneficial for PD-affected individuals, particularly those on l-DOPA (levodopa or l-3,4-dihydroxyphenylalanine) treatment. Additionally, one-carbon metabolism generates methyl groups, and methylation capacity in PD-affected individuals is reduced. This reduced capacity has an impact on expression of disease-specific genes that may be involved in PD progression. During B-vitamin deficiency, animal studies report increased vulnerability of DA cells through increased oxidative stress and altered methylation. Nutrition, especially folates and related B-vitamins, may contribute to the onset and progression of PD by making the brain more vulnerable to damage; however, further investigation is required.

2010 ◽  
Vol 104 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Kentaro Murakami ◽  
Yoshihiro Miyake ◽  
Satoshi Sasaki ◽  
Keiko Tanaka ◽  
Wakaba Fukushima ◽  
...  

Increased homocysteine levels might accelerate dopaminergic cell death in Parkinson's disease (PD) through neurotoxic effects; thus, increasing intake of B vitamins involved in the regulation of homocysteine metabolism might decrease the risk of PD through decreasing plasma homocysteine. However, epidemiological evidence for the association of dietary B vitamins with PD is sparse, particularly in non-Western populations. We conducted a hospital-based case–control study in Japan to examine associations between dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and the risk of PD. Patients with PD diagnosed using the UK PD Society Brain Bank criteria (n 249) and controls without neurodegenerative diseases (n 368) were recruited. Dietary intake during the preceding month was assessed at the time of study recruitment using a validated, self-administered, semi-quantitative, comprehensive diet history questionnaire. After adjustment for potential dietary and non-dietary confounding factors, intake of folate, vitamin B12 and riboflavin was not associated with the risk of PD (P for trend = 0·87, 0·70 and 0·11, respectively). However, low intake of vitamin B6 was associated with an increased risk of PD, independent of potential dietary and non-dietary confounders. Multivariate OR (95 % CI) for PD in the first, second, third and fourth quartiles of vitamin B6 were 1 (reference), 0·56 (0·33, 0·94), 0·69 (0·38, 1·25) and 0·48 (0·23, 0·99), respectively (P for trend = 0·10). In conclusion, in the present case–control study in Japan, low intake of vitamin B6, but not of folate, vitamin B12 or riboflavin, was independently associated with an increased risk of PD.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Clarissa Loureiro das Chagas Campêlo ◽  
Regina Helena Silva

There is increasing evidence of the contribution of genetic susceptibility to the etiology of Parkinson’s disease (PD). Genetic variations in the SNCA gene are well established by linkage and genome-wide association studies. Positive associations of single nucleotide polymorphisms (SNPs) in SNCA and increased risk for PD were found. However, the role of SNCA variants in individual traits or phenotypes of PD is unknown. Here, we reviewed the current literature and identified 57 studies, performed in fourteen different countries, that investigated SNCA variants and susceptibility to PD. We discussed the findings based on environmental factors, history of PD, clinical outcomes, and ethnicity. In conclusion, SNPs within the SNCA gene can modify the susceptibility to PD, leading to increased or decreased risk. The risk associations of some SNPs varied among samples. Of notice, no studies in South American or African populations were found. There is little information about the effects of these variants on particular clinical aspects of PD, such as motor and nonmotor symptoms. Similarly, evidence of possible interactions between SNCA SNPs and environmental factors or disease progression is scarce. There is a need to expand the clinical applicability of these data as well as to investigate the role of SNCA SNPs in populations with different ethnic backgrounds.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
J. L. Reay ◽  
M. A. Smith ◽  
L. M. Riby

A copious amount of scientific scrutiny has been dedicated to documenting typical and atypical human ageing, with a substantial body of work focusing upon the impact of lifestyle choices. One such lifestyle choice is that of diet and, in particular, micronutrient ingestion. Epidemiological studies have reported positive associations between B vitamin status and cognitive function, including negative associations between biological markers (i.e., homocysteine) of dysregulated one-carbon metabolism and cognitive function. This has led to a surge of randomised control trials (RCTs) investigations into B vitamin therapy. However, results have continuingly failed to show beneficial behavioural effects. Despite this, results reliably show treatment-related increases in B vitamin level and decreases in homocysteine level—both of which have been identified as risk factors for atypical ageing. In this paper we argue that it would be premature to conclude that B vitamin therapy has no potential and that more research is needed to systematically investigate the optimal dose, the therapeutic “window,” and individual differences in therapy responders and nonresponders. We start with a brief look at one-carbon metabolism and then consider the evidence from epidemiological studies and RCTs in relation to three specific B vitamins: folic acid (B9), pyridoxine (B6), and cobamides (B12).


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 355
Author(s):  
Barbara Zapała ◽  
Tomasz Stefura ◽  
Tomasz Milewicz ◽  
Julia Wątor ◽  
Monika Piwowar ◽  
...  

The type of diet not only affects the composition of the oral microflora but is also one of the more critical factors associated with an increased risk of Parkinson’s disease, PD. This study compared diet preferences and oral microbiota profiles in patients with PD vs. healthy controls. This study compared the oral microbiota composition of 59 patients with PD and 108 healthy controls (without neurodegeneration) using 16S rRNA gene amplicon sequencing. According to results, oral microbiota in patients with PD is different compared from healthy controls. In particular, decreased abundance of Proteobacteria, Pastescibacteria, and Tenercutes was observed. The oral cavity of patients with PD was characterized by the high relative abundance of bacteria from the genera Prevotella, Streptococcus, and Lactobaccillus. There were also differences in food preferences between patients with PD and healthy controls, which revealed significantly higher intake of margarine, fish, red meat, cereals products, avocado, and olives in the patients with PD relative to healthy controls. Strong positive and negative correlations between specific food products and microbial taxa were identified.


2018 ◽  
Vol 38 (1) ◽  
pp. 401-429 ◽  
Author(s):  
Anne K. Bozack ◽  
Roheeni Saxena ◽  
Mary V. Gamble

Exposure to inorganic arsenic (InAs) via drinking water and/or food is a considerable worldwide problem. Methylation of InAs generates monomethyl (MMAsIII+V)- and dimethyl (DMAsIII+V)-arsenical species in a process that facilitates urinary As elimination; however, MMAs is considerably more toxic than either InAs or DMAs. Emerging evidence suggests that incomplete methylation of As to DMAs, resulting in increased MMAs, is associated with increased risk for a host of As-related health outcomes. The biochemical pathway that provides methyl groups for As methylation, one-carbon metabolism (OCM), is influenced by folate and other micronutrients, including choline and betaine. Individuals and species differ widely in their ability to methylate As. A growing body of research, including cell-culture, animal-model, and epidemiological studies, has demonstrated the role of OCM-related micronutrients in As methylation. This review examines the evidence that nutritional status and nutritional interventions can influence the metabolism and toxicity of As, with a primary focus on folate.


2020 ◽  
Vol 124 (8) ◽  
pp. 865-873
Author(s):  
Takehiro Michikawa ◽  
Hiroshi Nitta ◽  
Makiko Sekiyama ◽  
Tatsuo Kuroda ◽  
Shoji F. Nakayama ◽  
...  

AbstractThe occurrence of anorectal malformations (ARM) is thought to be reduced with sufficient folate intake. However, there is no apparent evidence. We focused on enzyme cofactors for one-carbon metabolism, including folate (vitamin B9), vitamin B6 and vitamin B12, and explored the association between maternal combined intake of these B vitamins and the risk of ARM. Using baseline data from a Japanese nationwide birth cohort study between 2011 and 2014, we analysed data of 89 235 women (mean age at delivery = 31·2 years) who delivered singleton live births without chromosomal anomalies. Information on dietary intake was obtained via a FFQ focused on early pregnancy and used to estimate B vitamin intake. We also collected information on the frequency of folic acid supplement use. ARM occurrence was ascertained from medical records. We identified forty-three cases of ARM diagnosed up to the first month after birth (4·8 per 10 000 live births). In terms of individual intake of the respective B vitamins, high vitamin B6 intake was non-significantly associated with reduced odds of ARM. Compared with women in the low combined B vitamin intake group, the OR of having an infant with ARM was 0·4 (95 % CI 0·2, 1·0) in the high intake group (folate ≥400 μg/d, and upper half of vitamin B6 and/or vitamin B12). In conclusion, our cohort analysis suggested an inverse association between the combined intake of one-carbon metabolism-related B vitamins in early pregnancy and ARM occurrence.


Author(s):  
Yasir Hasan Siddique

: Alpha synuclein (α-synuclein) is a protein which is abundantly found in brain and in lesser amount in heart and muscles. The exact role of α-synuclein is not known but it is consider to control the movement of synaptic vesicles. Its overexpression in the neurons leads to the formation of Lewy bodies which specifically damage the dopaminergic neurons in the subtantianigra of the mid brain and leads to the progression of Parkinson’s disease (PD). There are evidences that aggregates of α-synuclein behaves like prions. The present review is an attempt to put forth the nature of α-synuclein as prions.


Author(s):  
Lynne Krohn ◽  
Francis P. Grenn ◽  
Mary B. Makarious ◽  
Jonggeol Jeffrey Kim ◽  
Sara Bandres-Ciga ◽  
...  

AbstractMultiple genes have been associated with monogenic Parkinson’s disease and Parkinsonism syndromes. Mutations in PINK1 (PARK6) have been shown to result in autosomal recessive early onset Parkinson’s disease. In the past decade, several studies have suggested that carrying a single heterozygous PINK1 mutation is associated with increased risk for Parkinson’s disease. Here we comprehensively assess the role of PINK1 variants in Parkinson’s disease susceptibility using several large datasets totalling 376,558 individuals including: 13,708 Parkinson’s disease cases and 362,850 controls. After combining these data, we did not find evidence to support a role for heterozygous PINK1 mutations as a risk factor for Parkinson’s disease.


2020 ◽  
Vol 16 (3) ◽  
pp. 238-241 ◽  
Author(s):  
Leandro B. Bergantin

Background: A link between diabetes and Parkinson´s disease (PD) has been established by several reports. Consistent data report that people diagnosed with diabetes have demonstrated an enhanced risk of manifesting PD in their lifetime. The working principles involved in this link have been extensively discussed. Over the last decade, diabetes has been reported to be correlated with an increased risk of dementia, suggesting a potential role of diabetes, or insulin signalling dysregulations, in neurodegeneration. In addition, it is nowadays highly debated that dysregulations related to Ca2+ signalling may be an upstream issue which could also link diabetes and PD. Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling) control both the neurotransmitters/hormones release and neuronal death. Conclusion: Considering our previous reports about Ca2+/cAMP signalling, the putative contribution of Ca2+/cAMP signalling in this link (between diabetes and PD) is discussed in this paper.


2020 ◽  
Author(s):  
Prabhjyot Saini ◽  
Uladzislau Rudakou ◽  
Eric Yu ◽  
Jennifer A. Ruskey ◽  
Farnaz Asayesh ◽  
...  

AbstractRare mutations in genes originally discovered in multi-generational families have been associated with increased risk of Parkinson’s Disease (PD). The involvement of rare variants in DNAJC13, UCHL1, HTRA2, GIGYF2 and EIF4G1 loci have been poorly studied or produced conflicting results across cohorts. However, they are still being often referred to as “PD-genes” and used in different models. To further elucidate the role of these five genes in PD, we fully sequenced them using molecular inversion probes in 2,408 PD patients and 3,444 controls from 3 different cohorts. A total of 788 rare variants were identified across the five genes and three cohorts. Burden analyses and optimized sequence Kernel association tests revealed no significant association between any of the genes and PD after correction for multiple comparisons. Our results do not support an association of the five tested genes with PD. Combined with previous studies, it is unlikely that any of these genes plays an important role in PD. Their designation as “PARK” genes should be reconsidered.


Sign in / Sign up

Export Citation Format

Share Document