scholarly journals Applications of CRISPR-Cas9 as an Advanced Genome Editing System in Life Sciences

BioTech ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 14
Author(s):  
Kamand Tavakoli ◽  
Alireza Pour-Aboughadareh ◽  
Farzad Kianersi ◽  
Peter Poczai ◽  
Alireza Etminan ◽  
...  

Targeted nucleases are powerful genomic tools to precisely change the target genome of living cells, controlling functional genes with high exactness. The clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) genome editing system has been identified as one of the most useful biological tools in genetic engineering that is taken from adaptive immune strategies for bacteria. In recent years, this system has made significant progress and it has been widely used in genome editing to create gene knock-ins, knock-outs, and point mutations. This paper summarizes the application of this system in various biological sciences, including medicine, plant science, and animal breeding.

2019 ◽  
Vol 3 (5) ◽  
pp. 483-491 ◽  
Author(s):  
Mallory Evanoff ◽  
Alexis C. Komor

Base editors are a new family of programmable genome editing tools that fuse ssDNA (single-stranded DNA) modifying enzymes to catalytically inactive CRISPR-associated (Cas) endonucleases to induce highly efficient single base changes. With dozens of base editors now reported, it is apparent that these tools are highly modular; many combinations of ssDNA modifying enzymes and Cas proteins have resulted in a variety of base editors, each with its own unique properties and potential uses. In this perspective, we describe currently available base editors, highlighting their modular nature and describing the various options available for each component. Furthermore, we briefly discuss applications in synthetic biology and genome engineering where base editors have presented unique advantages over alternative techniques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuu Asano ◽  
Kensuke Yamashita ◽  
Aoi Hasegawa ◽  
Takanori Ogasawara ◽  
Hoshie Iriki ◽  
...  

AbstractThe powerful genome editing tool Streptococcus pyogenes Cas9 (SpCas9) requires the trinucleotide NGG as a protospacer adjacent motif (PAM). The PAM requirement is limitation for precise genome editing such as single amino-acid substitutions and knock-ins at specific genomic loci since it occurs in narrow editing window. Recently, SpCas9 variants (i.e., xCas9 3.7, SpCas9-NG, and SpRY) were developed that recognise the NG dinucleotide or almost any other PAM sequences in human cell lines. In this study, we evaluated these variants in Dictyostelium discoideum. In the context of targeted mutagenesis at an NG PAM site, we found that SpCas9-NG and SpRY were more efficient than xCas9 3.7. In the context of NA, NT, NG, and NC PAM sites, the editing efficiency of SpRY was approximately 60% at NR (R = A and G) but less than 22% at NY (Y = T and C). We successfully used SpRY to generate knock-ins at specific gene loci using donor DNA flanked by 60 bp homology arms. In addition, we achieved point mutations with efficiencies as high as 97.7%. This work provides tools that will significantly expand the gene loci that can be targeted for knock-out, knock-in, and precise point mutation in D. discoideum.


2021 ◽  
Vol 7 (2) ◽  
pp. 149
Author(s):  
Sarah-Maria Wege ◽  
Katharina Gejer ◽  
Fabienne Becker ◽  
Michael Bölker ◽  
Johannes Freitag ◽  
...  

The phytopathogenic smut fungus Ustilago maydis is a versatile model organism to study plant pathology, fungal genetics, and molecular cell biology. Here, we report several strategies to manipulate the genome of U. maydis by the CRISPR/Cas9 technology. These include targeted gene deletion via homologous recombination of short double-stranded oligonucleotides, introduction of point mutations, heterologous complementation at the genomic locus, and endogenous N-terminal tagging with the fluorescent protein mCherry. All applications are independent of a permanent selectable marker and only require transient expression of the endonuclease Cas9hf and sgRNA. The techniques presented here are likely to accelerate research in the U. maydis community but can also act as a template for genome editing in other important fungi.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Alexander P. Hynes ◽  
Simon J. Labrie ◽  
Sylvain Moineau

ABSTRACT The adaptive immune system of prokaryotes, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes), results in specific cleavage of invading nucleic acid sequences recognized by the cell’s “memory” of past encounters. Here, we exploited the properties of native CRISPR-Cas systems to program the natural “memorization” process, efficiently generating immunity not only to a bacteriophage or plasmid but to any specifically chosen DNA sequence. IMPORTANCE CRISPR-Cas systems have entered the public consciousness as genome editing tools due to their readily programmable nature. In industrial settings, natural CRISPR-Cas immunity is already exploited to generate strains resistant to potentially disruptive viruses. However, the natural process by which bacteria acquire new target specificities (adaptation) is difficult to study and manipulate. The target against which immunity is conferred is selected stochastically. By biasing the immunization process, we offer a means to generate customized immunity, as well as provide a new tool to study adaptation.


Author(s):  
К.С. Кочергин-Никитский ◽  
А.В. Лавров ◽  
Е.В. Заклязьминская ◽  
С.А. Смирнихина

Наследственные кардиомиопатии характеризуются неблагоприятным прогнозом и низкой пятилетней выживаемостью пациентов с выраженной клиникой. При этом лечение, за исключением хирургического, в основном паллиативное, во многих случаях лишь трансплантация сердца может улучшить состояние пациента и прогноз. Часть наследственных кардиомиопатий ассоциирована с аутосомно-доминантными мутациями в гене DES, кодирующем белок промежуточных филаментов десмин, дефекты в котором ведут к развитию десминопатий с вовлечением наиболее активно работающих мышц - скелетных, миокарда, мышц дыхательной системы. Новые терапевтические подходы, основанные на методах геномного редактирования, могут позволить устранить каузативный генетический дефект. Так как имеются данные об отсутствии клинических симптомов у людей с гетерозиготными нонсенс мутациями в гене DES, по-видимому, имеется возможность снизить тяжесть протекания десминопатий путем нокаута мутантного аллеля в случае гетерозиготной мутации. Целью работы являлась проверка возможности специфического нокаута аллелей гена DES, несущих гетерозиготные мутации, ассоциированные с десминопатиями, методами геномного редактирования. Нами был получен генетический материал трех пациентов с десминопатиями, связанными с мутациями в гене DES (c.330_338del, p.A337P (c.1009G>C) и p.R355P (c.1064G>C)). Направляющие РНК, совместимые с нуклеазами SaCas9 и eSpCas9(1.1), были подобраны, используя онлайн сервис Benchling, и клонированы в плазмиды, несущие соответствующие эндонуклеазы Cas9. Редактирующие плазмиды котрансфицировали в клетки HEK293T вместе с «таргетными» плазмидами, содержащими участки гена DES с мутациями. Анализ характерных для негомологичного соединения концов инделов в выделенной из клеток спустя 48 часов после трансфекции тотальной ДНК проводился посредством TIDE-анализа полученных сиквенсов целевых участков, либо методом Т7Е1 анализа. Наибольшая средняя эффективность 2,22% (до 8,06%) показана при использовании sgRNA на мутацию c.330_338del в комбинации с eSpCas9(1.1). Эффективность других комбинаций направляющих РНК и Cas9 не превышала 3%. Достигнутая эффективность нокаута очевидно недостаточна для коррекции десминопатии на уровне организма. Необходимость специфического нокаутирования мутантных аллелей не позволяет использовать другие направляющие РНК для CRISPR/Cas9, поэтому необходимо совершенствование разработанных систем для повышения их эффективности либо использование новых, более эффективных, направляемых нуклеаз. Hereditary cardiomyopathies are characterized by the generally poor prognosis and low 5-year survival of patients with severe symptoms. Besides surgical approaches, cardiomyopathy therapy mainly palliative and often heart transplantation is the only option to improve patient state and prognosis. Some of these pathologies are associated with the autosomal-dominant DES gene mutations. DES encodes intermediate filaments protein desmin, which defects causes desminopathies involving most active muscles such as skeletal muscles, myocardium and respiratory muscles. New therapeutic based on genome editing approaches could be used to correct causative genetic defect. There are data that heterozygous nonsense mutations in DES gene may be asymptomatic. Thus there is, apparently, a possibility to decrease severity of desminopathy using mutant allele knockout. Purpose. The aim of this work was to test the possibility of specific knockout of the DES gene alleles with heterozygous desminopathy-associated mutations by means of genome editing methods. Materials. We received genetic materials of three patients with desminopathy caused by DES gene mutations (c.330_338del, p.A337P (c.1009G>C) и p.R355P (c.1064G>C)). Guide RNA, compatible with nucleases SaCas9 and eSpCas9(1.1) were designed using online service Benchling and cloned into plasmids with corresponding Cas9 nucleases. Editing plasmids were cotransfected into HEK293T cells with “target” plasmids, containing DES gene sites with mutations. NHEJ-produced indels were assessed using TIDE-analysis with amplified and sequenced sites or using T7E1 analysis. Results. Combination sgRNA for c.330_338del with eSpCas9(1.1) demonstrated most mean efficiency of 2,22% (up to 8,06%). Others combinations of sgRNAs and Cas9 efficiency did not overcome 3%. Conclusions. Achieved knockout efficiency is evidently not enough for organism-level desminopathy correction. The need for specific knockout of mutated alleles does not allow usage of different guide RNAs for CRISPR/Cas9, so it is necessary to improve the developed systems to increase their efficiency or to use new, more efficient, targeted nucleases.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1790
Author(s):  
Georgii Dolgalev ◽  
Ekaterina Poverennaya

CRISPR-Cas-based genome editing is a revolutionary approach that has provided an unprecedented investigational power for the life sciences. Rapid and efficient, CRISPR-Cas technologies facilitate the generation of complex biological models and at the same time provide the necessary methods required to study these models in depth. The field of proteomics has already significantly benefited from leveraging the power of CRISPR-Cas technologies, however, many potential applications of these technologies in the context of proteomics remain unexplored. In this review, we intend to provide an introduction to the CRISPR-Cas technologies and demonstrate how they can be applied to solving proteome-centric questions. To achieve this goal, we begin with the description of the modern suite of CRISPR-Cas-based tools, focusing on the more mature CRISPR-Cas9 system. In the second part of this review, we highlight both established and potential applications of the CRISPR-Cas technologies to proteomics.


2019 ◽  
Author(s):  
Florian Hahn ◽  
Andrey Korolev ◽  
Laura Sanjurjo Loures ◽  
Vladimir Nekrasov

AbstractBackgroundCRISPR/Cas has recently become a widely used genome editing tool in various organisms, including plants. Applying CRISPR/Cas often requires delivering multiple expression units into plant and hence there is a need for a quick and easy cloning procedure. The modular cloning (MoClo), based on the Golden Gate (GG) method, has enabled development of cloning systems with standardised genetic parts, e.g. promoters, coding sequences or terminators, that can be easily interchanged and assembled into expression units, which in their own turn can be further assembled into higher order multigene constructs.ResultsHere we present an expanded cloning toolkit that contains ninety-nine modules encoding a variety of CRISPR/Cas-based nucleases and their corresponding guide RNA backbones. Among other components, the toolkit includes a number of promoters that allow expression of CRISPR/Cas nucleases (or any other coding sequences) and their guide RNAs in monocots and dicots. As part of the toolkit, we present a set of modules that enable quick and facile assembly of tRNA-sgRNA polycistronic units without a PCR step involved. We also demonstrate that our tRNA-sgRNA system is functional in wheat protoplasts.ConclusionsWe believe the presented CRISPR/Cas toolkit is a great resource that will contribute towards wider adoption of the CRISPR/Cas genome editing technology and modular cloning by researchers across the plant science community.


2020 ◽  
Author(s):  
Clinton Gabel ◽  
Zhuang Li ◽  
Heng Zhang ◽  
Leifu Chang

Abstract CRISPR–Cas systems are adaptive immune systems in bacteria and archaea to defend against mobile genetic elements (MGEs) and have been repurposed as genome editing tools. Anti-CRISPR (Acr) proteins are produced by MGEs to counteract CRISPR–Cas systems and can be used to regulate genome editing by CRISPR techniques. Here, we report the cryo-EM structures of three type I-F Acr proteins, AcrIF4, AcrIF7 and AcrIF14, bound to the type I-F CRISPR–Cas surveillance complex (the Csy complex) from Pseudomonas aeruginosa. AcrIF4 binds to an unprecedented site on the C-terminal helical bundle of Cas8f subunit, precluding conformational changes required for activation of the Csy complex. AcrIF7 mimics the PAM duplex of target DNA and is bound to the N-terminal DNA vise of Cas8f. Two copies of AcrIF14 bind to the thumb domains of Cas7.4f and Cas7.6f, preventing hybridization between target DNA and the crRNA. Our results reveal structural detail of three AcrIF proteins, each binding to a different site on the Csy complex for inhibiting degradation of MGEs.


Sign in / Sign up

Export Citation Format

Share Document