scholarly journals Glutamatergic Activation of Neuronostatin Neurons in the Periventricular Nucleus of the Hypothalamus

2020 ◽  
Vol 10 (4) ◽  
pp. 217
Author(s):  
Sema Serter Kocoglu ◽  
Duygu Gok Yurtseven ◽  
Cihan Cakir ◽  
Zehra Minbay ◽  
Ozhan Eyigor

Neuronostatin, a newly identified anorexigenic peptide, is present in the central nervous system. We tested the hypothesis that neuronostatin neurons are activated by feeding as a peripheral factor and that the glutamatergic system has regulatory influences on neuronostatin neurons. The first set of experiments analyzed the activation of neuronostatin neurons by refeeding as a physiological stimulus and the effectiveness of the glutamatergic system on this physiological stimulation. The subjects were randomly divided into three groups: the fasting group, refeeding group, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)+refeeding group. We found that refeeding increased the phosphorylated signal transducers and transcription activator-5 (pSTAT5) expression in neuronostatin-positive neurons and that the CNQX injection significantly suppressed the number of pSTAT5-expressing neuronostatin neurons. The second set of experiments analyzed the activation pathways of neuronostatin neurons and the regulating effects of the glutamatergic system on neuronostatin neurons. The animals received intraperitoneal injections of glutamate receptor agonists (kainic acid, α-amino-3-hydroxy-5methyl-4-isoazepropionic acid (AMPA), and N-methyl-D-aspartate (NMDA)) or 0.9% NaCl. The number of c-Fos-expressing neuronostatin neurons significantly increased following the AMPA and NMDA injections. In conclusion, we found that the neuronostatin neurons were activated by peripheral or central signals, including food intake and/or glutamatergic innervation, and that the glutamate receptors played an important role in this activation.

2006 ◽  
Vol 203 (5) ◽  
pp. 1371-1381 ◽  
Author(s):  
Erin Mehlhop ◽  
Michael S. Diamond

West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3−/− and complement receptor 1/2−/− mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.


2021 ◽  
Vol 19 ◽  
Author(s):  
Peter Deng ◽  
Julian Halmai ◽  
Jennifer J. Waldo ◽  
Kyle D. Fink

: Advancements in programmable DNA-binding proteins (DBDs) that target the genome, such as zinc fingers, transcription activator-like effectors, and Cas9, have broadened drug target design beyond traditional protein substrates. Effective delivery methodologies remain a major barrier in targeting the central nervous system. Currently, adeno-associated virus is the most well-validated delivery system for the delivery of DBDs towards the central nervous with multiple, on-going clinical trials. While effective in transducing neuronal cells, viral delivery systems for DBDs remain problematic due to inherent viral packaging limits or immune responses that hinder translational potential. Direct administration of DBDs or encapsulation in lipid nanoparticles may provide alternative means towards delivering gene therapies into the central nervous system. This review will evaluate strengths and limitations in current DBD delivery strategies in-vivo. Furthermore, this review will discuss the use of adult stem cells as a putative delivery vehicle for DBDs and potential advantages that these systems have over previous methodologies.


2016 ◽  
Vol 62 (5) ◽  
pp. 49-50 ◽  
Author(s):  
Michal Szlis ◽  
Jolanta Polkowska ◽  
Anna Wójcik-Gładysz

Obestatin, an anorexigenic peptide acting at the central nervous system and on the periperial level, can co-create neuroendocrine network, which modulate the gonadotrophic axis activity. The aim of this study was to investigate the role of intracerebroventricular obestatin infusion on the activity of the gonadoliberine (GnRH) neurons activity.The experiment was performed on peripubertal Polish Merino sheep (n=24). Animals were divided into 2 groups: control (Ringer-Lock solution infusions; n=12) and experimental (obestatin infusion, 25μl/120μl/h; n=12). Infusions were performed over three consecutive days; blood samples were collected on day 0 and day 3. After the experiment, the animals were slaughtered, and the chosen brain tissue was preserved for IHC and Real Time RT-qPCR analysis.It was also shown that exogenous obestatin changes the selected gene expression of GnRH pulse generator, decreases the secretory activity of GnRH neurons, resulting from the inhibition of GnRH release from median eminence terminal nerves, and also decreases the GnRH receptor gene expression in pituitary. On the basis of the obtained results it can be concluded that obestatin may be involved in the modulation of reproduction processes in animals at the level of the central nervous system. However, the mechanism of its action requires further research, especially identifying the obestatin receptor itself.


2003 ◽  
Vol 5 (2) ◽  
pp. 139-153

Recent research has overcome the old paradigms of the brain as an immunologically privileged organ, and of the exclusive role of neurotransmitters and neuropeptides as signal transducers in the central nervous system. Growing evidence suggests that the signal proteins of the immune system - the cytokines - are also involved in modulation of behavior and induction of psychiatric symptoms. This article gives an overview on the nature of cytokines and the proposed mechanisms of immune-to-brain interaction. The role of cytokines in psychiatric symptoms, syndromes, and disorders like sickness behavior, major depression, and schizophrenia are discussed together with recent immunogenetic findings.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mia Michaela Pal

This brief review article makes the argument that glutamate is deserving of its newfound attention within the neuroscience literature and that many directions of important research have yet to be explored. Glutamate is an excitatory neurotransmitter with several types of receptors found throughout the central nervous system, and its metabolism is important to maintaining optimal levels within the extracellular space. As such, it is important to memory, cognition, and mood regulation. The mechanisms by which chronic stress affect the glutamatergic system and neuroplasticity are outlined. Several implications for potential pharmacologic and non-pharmacologic interventions are discussed.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Sign in / Sign up

Export Citation Format

Share Document