scholarly journals Applying a Sensing-Enabled System for Ensuring Safe Anterior Cingulate Deep Brain Stimulation for Pain

2019 ◽  
Vol 9 (7) ◽  
pp. 150 ◽  
Author(s):  
Yongzhi Huang ◽  
Binith Cheeran ◽  
Alexander L. Green ◽  
Timothy J. Denison ◽  
Tipu Z. Aziz

Deep brain stimulation (DBS) of the anterior cingulate cortex (ACC) was offered to chronic pain patients who had exhausted medical and surgical options. However, several patients developed recurrent seizures. This work was conducted to assess the effect of ACC stimulation on the brain activity and to guide safe DBS programming. A sensing-enabled neurostimulator (Activa PC + S) allowing wireless recording through the stimulating electrodes was chronically implanted in three patients. Stimulation patterns with different amplitude levels and variable ramping rates were tested to investigate whether these patterns could provide pain relief without triggering after-discharges (ADs) within local field potentials (LFPs) recorded in the ACC. In the absence of ramping, AD activity was detected following stimulation at amplitude levels below those used in chronic therapy. Adjustment of stimulus cycling patterns, by slowly ramping on/off (8-s ramp duration), was able to prevent ADs at higher amplitude levels while maintaining effective pain relief. The absence of AD activity confirmed from the implant was correlated with the absence of clinical seizures. We propose that AD activity in the ACC could be a biomarker for the likelihood of seizures in these patients, and the application of sensing-enabled techniques has the potential to advance safer brain stimulation therapies, especially in novel targets.

Neurosurgery ◽  
2019 ◽  
Vol 85 (6) ◽  
pp. E1043-E1049 ◽  
Author(s):  
Marisa DiMarzio ◽  
Tanweer Rashid ◽  
Ileana Hancu ◽  
Eric Fiveland ◽  
Julia Prusik ◽  
...  

Abstract BACKGROUND Chronic pain occurs in 83% of Parkinson disease (PD) patients and deep brain stimulation (DBS) has shown to result in pain relief in a subset of patients, though the mechanism is unclear. OBJECTIVE To compare functional magnetic resonance imaging (MRI) data in PD patients with chronic pain without DBS, those whose pain was relieved (PR) with DBS and those whose pain was not relieved (PNR) with DBS. METHODS Functional MRI (fMRI) with blood oxygen level-dependent activation data was obtained in 15 patients in control, PR, and PNR patients. fMRI was obtained in the presence and absence of a mechanical stimuli with DBS ON and DBS OFF. Voxel-wise analysis using pain OFF data was used to determine which regions were altered during pain ON periods. RESULTS At the time of MRI, pain was scored a 5.4 ± 1.2 out of 10 in the control, 4.25 ± 1.18 in PNR, and 0.8 ± 0.67 in PR cohorts. Group analysis of control and PNR groups showed primary somatosensory (SI) deactivation, whereas PR patients showed thalamic deactivation and SI activation. DBS resulted in more decreased activity in PR than PNR (P < .05) and more activity in anterior cingulate cortex (ACC) in PNR patients (P < .05). CONCLUSION Patients in the control and PNR groups showed SI deactivation at baseline in contrast to the PR patients who showed SI activation. With DBS ON, the PR cohort had less activity in SI, whereas the PNR had more anterior cingulate cortex activity. We provide pilot data that patients whose pain responds to DBS may have a different fMRI signature than those who do not, and PR and PNR cohorts produced different brain responses when DBS is employed.


2016 ◽  
Vol 127 (7) ◽  
pp. 2573-2580 ◽  
Author(s):  
Yongzhi Huang ◽  
Huichun Luo ◽  
Alexander L. Green ◽  
Tipu Z. Aziz ◽  
Shouyan Wang

2019 ◽  
Author(s):  
Ningfei Li ◽  
Juan Carlos Baldermann ◽  
Astrid Kibleur ◽  
Svenja Treu ◽  
Harith Akram ◽  
...  

AbstractMultiple surgical targets have been proposed for treating obsessive-compulsive disorder (OCD) with deep brain stimulation (DBS). However, different targets may modulate the same neural network responsible for clinical improvement. Here we analyzed data from four cohorts of OCD patients (N = 50) that underwent DBS to the anterior limb of the internal capsule (ALIC), the nucleus accumbens (NAcc) or the subthalamic nucleus (STN). Fiber tracts that were predominantly connected to electrodes in good or poor DBS responders were isolated from a normative structural connectome and assigned a predictive value. Strikingly, the same fiber bundle was related to treatment response when independently analyzing two large training cohorts that targeted either ALIC or STN. This discriminative tract is a subsection of the ALIC and connects frontal regions (such as the dorsal anterior cingulate, dACC, and ventral prefrontal, vlPFC, cortices to the STN). When informing the tract solely based on one cohort (e.g. ALIC), clinical improvements in the other (e.g. STN) could be significantly predicted, and vice versa. Finally, clinical improvements of eight patients from a third center with electrodes in the NAcc and six patients from a fourth center in which electrodes had been implanted in both STN and ALIC were significantly predicted based on this novel tract-based DBS target. Results suggest a functional role of a limbic hyperdirect pathway that projects from dACC and vlPFC to anteriomedial STN. Obsessive-compulsive symptoms seem to be tractable by modulating the specific bundle isolated here. Our results show that connectivity-derived improvement models can inform clinical improvement across DBS targets, surgeons and centers. The identified tract is now three-dimensionally defined in stereotactic standard space and will be made openly available.


2019 ◽  
Vol 38 (03) ◽  
pp. 175-182 ◽  
Author(s):  
Ledismar José da Silva ◽  
Tâmara Husein Naciff ◽  
Maria Flávia Vaz de Oliveira

AbstractAnorexia nervosa is a psychiatric disorder characterized by distortions of body size, weight, and shape perception, as well as by food restriction and/or binge and purging behaviors. It mostly affects young women and causes severe negative impacts on their physical, psychological, and social health. Recent studies have analyzed deep brain stimulation (DBS), a neurosurgical procedure that involves electrode implantation in strategical brain areas, to obtain remission of the symptoms of anorexia nervosa. The results showed that the stimulation of areas associated to the neurocircuitry of anorexia nervosa, such as nucleus accumbens, anterior cingulate cortex, ventral striatum, and bed nucleus of the stria terminalis, provokes beneficial responses in terms of body mass index, quality of life, social functioning, and psychiatric comorbidities. Nevertheless, broader investigations are needed to endorse the clinical usage of DBS in the management of anorexia nervosa.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Karsten Mueller ◽  
Dušan Urgošík ◽  
Tommaso Ballarini ◽  
Štefan Holiga ◽  
Harald E Möller ◽  
...  

Abstract Levodopa is the first-line treatment for Parkinson’s disease, although the precise mechanisms mediating its efficacy remain elusive. We aimed to elucidate treatment effects of levodopa on brain activity during the execution of fine movements and to compare them with deep brain stimulation of the subthalamic nuclei. We studied 32 patients with Parkinson’s disease using functional MRI during the execution of finger-tapping task, alternating epochs of movement and rest. The task was performed after withdrawal and administration of a single levodopa dose. A subgroup of patients (n = 18) repeated the experiment after electrode implantation with stimulator on and off. Investigating levodopa treatment, we found a significant interaction between both factors of treatment state (off, on) and experimental task (finger tapping, rest) in bilateral putamen, but not in other motor regions. Specifically, during the off state of levodopa medication, activity in the putamen at rest was higher than during tapping. This represents an aberrant activity pattern probably indicating the derangement of basal ganglia network activity due to the lack of dopaminergic input. Levodopa medication reverted this pattern, so that putaminal activity during finger tapping was higher than during rest, as previously described in healthy controls. Within-group comparison with deep brain stimulation underlines the specificity of our findings with levodopa treatment. Indeed, a significant interaction was observed between treatment approach (levodopa, deep brain stimulation) and treatment state (off, on) in bilateral putamen. Our functional MRI study compared for the first time the differential effects of levodopa treatment and deep brain stimulation on brain motor activity. We showed modulatory effects of levodopa on brain activity of the putamen during finger movement execution, which were not observed with deep brain stimulation.


2008 ◽  
Vol 23 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Mustafa Saad Siddiqui ◽  
Thomas L. Ellis ◽  
Stephen B. Tatter ◽  
Michael S Okun

Pain ◽  
1984 ◽  
Vol 18 ◽  
pp. S114
Author(s):  
K. Amano ◽  
H. Kawamura ◽  
T. Tanikawa ◽  
H. Kawabatake ◽  
M. Notani ◽  
...  

2011 ◽  
Vol 31 (7) ◽  
pp. 1612-1622 ◽  
Author(s):  
Gaëtan Garraux ◽  
Mohamed A Bahri ◽  
Christian Lemaire ◽  
Christian Degueldre ◽  
Eric Salmon ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment in a subgroup of medically refractory patients with Parkinson's disease (PD). Here, we compared resting-state 18F-fluorodeoxyglucose (FDG) positron emission tomography images in the stimulator off (DBS_OFF) and on (DBS_ON) conditions in eight PD patients in an unmedicated state, on average 2 years after bilateral electrode implantation. Global standardized uptake value (SUV) significantly increased by ∼11% in response to STN-DBS. To avoid any bias in the voxel-based analysis comparing DBS_ON and DBS_OFF conditions, individual scan intensity was scaled to a region where FDG-SUV did not differ significantly between conditions. The resulting FDG-SUV ratio (FDG-SUVR) was found to increase in many regions in response to STN-DBS including the target area of surgery, caudate nuclei, primary sensorimotor, and associative cortices. Contrary to previous studies, we could not find any regional decrease in FDG-SUVR. These findings were indirectly supported by comparing the extent of areas with depressed FDG-SUVR in DBS_OFF and DBS_ON relatively to 10 normal controls. Altogether, these novel results support the prediction that the effect of STN-DBS on brain activity in PD is unidirectional and consists in an increase in many subcortical and cortical regions.


Sign in / Sign up

Export Citation Format

Share Document