scholarly journals Effect of Frequency Characteristics of Ground Motion on Response of Tuned Mass Damper Controlled Inelastic Concrete Frame

Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Md Motiur Rahman ◽  
Tahmina Tasnim Nahar ◽  
Dookie Kim

This paper investigates the performance of tuned mass damper (TMD) and dynamic behavior of TMD-controlled concrete structure considering the ground motion (GM) characteristics based on frequency content. The effectiveness of TMD in reducing the structural response and probability of collapse of the building frames are affected by the frequency characteristics of GMs. To attenuate the seismic vibration of the buildings, the TMD controlled building has been designed based on the modal analysis (modal frequencies and modal mass participation ratio). In this study, to investigate the performance of TMD, four different heights (i.e., 3, 5, 10, 20 stories) inelastic concrete moment-resisting frames equipped with TMDs are developed using an open-source finite element software. A series of numerical analyses have been conducted using sixty earthquakes classified into three categories corresponding to low, medium, and high-frequency characteristics of GMs. To evaluate the proposed strategy, peak lateral displacements, inter-story drift, and the probability of collapse using fragility analysis have been investigated through the structures equipped with and without TMD. The results appraise the effect of TMD and compare the seismic responses of earthquake frequency contents and the vibration control system of the inelastic building frames.

2016 ◽  
Vol 20 (9) ◽  
pp. 1375-1389 ◽  
Author(s):  
Mohammad Sabbir Rahman ◽  
Md Kamrul Hassan ◽  
Seongkyu Chang ◽  
Dookie Kim

The primary objective of this research is to find the effectiveness of an adaptive multiple tuned mass damper distributed along with the story height to control the seismic response of the structure. The seismic performance of a 10-story building was investigated, which proved the efficiency of the adaptive multiple tuned mass damper. Structures with single tuned mass damper and multiple tuned mass dampers were also modeled considering the location of the dampers at the top of the structure, whereas adaptive multiple tuned mass damper of the structure was modeled based on the story height. Selection of the location of the adaptive multiple tuned mass damper along with the story height was dominated by the modal parameters. Participation of modal mass directly controlled the number of the modes to be considered. To set the stage, a comparative study on the displacements and modal energies of the structures under the El-Centro, California, and North-Ridge earthquakes was conducted with and without various types of tuned mass dampers. The result shows a significant capability of the proposed adaptive multiple tuned mass damper as an alternative tool to reduce the earthquake responses of multi-story buildings.


2020 ◽  
Vol 2020 ◽  
pp. 1-25
Author(s):  
Hugo Hernández-Barrios ◽  
Iván F. Huergo ◽  
Carlos Arce-León ◽  
Carlos M. Patlán

A unified design model is proposed for various kinds of passive dynamic absorbers (PDAs) attached to buildings with different lateral resisting systems. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD), and (5) pendulum tuned mass damper (PTMD). The unified model consists of a coupled shear-flexural (CSF) discrete model with equivalent tuned mass dampers (TMDs), which allows the consideration of intermediate modes of lateral deformation. By modifying the nondimensional lateral stiffness ratio, the CSF model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The unified model was applied to a 144-meter-tall building located in the Valley of Mexico, which was subjected to both seismic and along-wind loads. The building has similar fundamental periods of vibration and different nondimensional lateral stiffness ratios for both translational directions, which shows the importance of considering both bending and shear stiffness in the design of PDAs. The results show a great effectiveness of PDAs in controlling along-wind RMS accelerations of the building; on the contrary, PDAs were ineffective in controlling peak lateral displacements. For a single PDA attached at the rooftop level, the maximum possible value of the PDA mass efficiency index increases as the nondimensional lateral stiffness ratio decreases; therefore, there is an increase in the vibration control effectiveness of PDAs for lateral flexural-type deformations.


2019 ◽  
Vol 25 (12) ◽  
pp. 1812-1822 ◽  
Author(s):  
Jinwei Jiang ◽  
Siu Chun Michael Ho ◽  
Nathanael J Markle ◽  
Ning Wang ◽  
Gangbing Song

This paper explores the feasibility of leveraging the damping generated by the friction between movable flange-mounted ball bearings and a stationary shaft. This bearing–shaft assembly is integrated with a tuned mass damper to form a frictional tuned mass damper (FTMD). The friction coefficient and the equivalent viscous damping ratio of the proposed FTMD were experimentally obtained based on different cases of glass, steel, and aluminum slide shafts. The proposed FTMD was modeled and simulated numerically to study its ability to suppress vibrations on a single degree of freedom structure. Furthermore, a parallel experimental validation of the FTMD was also executed to verify simulation results. Results from both experiments and simulations demonstrated that the proposed FTMD device was able to significantly improve the damping ratio of the primary structure from 0.35% to 5.326% during free vibration, and also to suppress around 90% of uncontrolled structural response at a tuned frequency. In particular, the frequency responses, among the tested shaft materials, suggested that the selected steel slide shaft practically provided a near-optimal damping coefficient, thus the proposed FTMD was able to considerably reduce structural resonant peak amplitudes over the tested excitation frequency domain.


2008 ◽  
Vol 2008 ◽  
pp. 1-9
Author(s):  
Giuseppe Carlo Marano ◽  
Emiliano Morrone ◽  
Giuseppe Quaranta ◽  
Francesco Trentadue

The uncertainty is a typical feature of each human activity since the greatest part of the information is always affected by a sure level of scattering. Different methodologies which deal with the uncertainty of the real problems exist. The principal aim of this paper is to present an innovative hybrid approach which combines fuzzy and stochastic theories in facing the structural analysis of a tuned mass damper subject to a dynamic random load, modelled by a modulated filtered white noise. In this work the parameters involved in the structural analysis will be considered uncertain and supposed fuzzy sets to take into account the effects of lexical and informal uncertainties which cannot be studied in a probabilistic way. The system analysis is conducted by means of -level optimization technique. Successively, a numerical example is presented to show the effectiveness of the proposed procedure. Moreover, a sensitivity analysis is performed to expose the variation of the structural response membership function considering different input values. Finally, a comparison between the response nominal value and the fuzzificated one is proposed to obtain a structural amplification factor.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Fan Yang ◽  
Ramin Sedaghati ◽  
Ebrahim Esmailzadeh

In this study, the structural vibration analysis and design of a Timoshenko beam with the attached tuned-mass-damper (TMD) under the harmonic and random excitations are presented using the finite element technique. A design optimization methodology has been developed in which the derived finite element formulation of a Timoshenko beam with the attached TMD has been combined with the sequential quadratic programming optimization algorithm to find the optimal design variables of TMD in order to suppress the vibration effectively. The validity of the developed optimal TMD system design strategy has been verified through illustrative examples, in which the structural response comparisons and the sensitivity analysis of the design parameters have been presented. The results were compared with those available in literatures and very close agreement was achieved.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012053
Author(s):  
Rechal L. Chawhan ◽  
Nikhil H. Pitale ◽  
S.S. Solanke ◽  
Mangesh Saiwala

Abstract The aim of this paper is to study the tuned liquid damper and it’s effectivness. The tunned liquid dampers are simply tuned mass damper where the liquid (usually water) replaces the mass.Tuned liquid dampers is a water tank placed over the structure which is able to reduce the dynamic structural response subjected to stimulation through sloshing effect. The effectiveness of tuned liquid damper depends upon various parameters. Tuned liquid damper are suitable for high rise building rather than short building. The tuned liquid damper decreases effect of harmonic excitation by Dissipating the energy of excitation through sloshing phenomenon.


2020 ◽  
Vol 10 (2) ◽  
pp. 457 ◽  
Author(s):  
Fanhao Meng ◽  
Jiancheng Wan ◽  
Yongjun Xia ◽  
Yong Ma ◽  
Jingjun Yu

This paper proposes a synthetic approach to design and implement a two-degree of freedom tuned mass damper (2DOFs TMD), aimed at damping bending and torsional modes of bridge decks (it can also be applied to other types of bridges like cable-stayed bridges to realize the energy dissipation). For verifying the effectiveness of the concept model, we cast the parameter optimization of the 2DOFs TMDs conceptual model as a control problem with decentralized static output feedback for minimizing the response of the bridge deck. For designing the expected modes of the 2DOFs TMDs, the graphical approach was introduced to arrange flexible beams properly according to the exact constraints. Based on the optimized frequency ratios, the dimensions of 2DOF TMDs are determined by the compliance matrix method. Finally, the mitigation effect was illustrated and verified by an experimental test on the suspension bridge mock-up. The results showed that the 2DOFs TMD is an effective structural response mitigation device used to mitigate the response of suspension bridges. It was also observed that based on the proposed synthetic approach, 2DOFs TMD parameters can be effectively designed to realize the target modes control.


Sign in / Sign up

Export Citation Format

Share Document