scholarly journals A Multi-Degree of Freedom Tuned Mass Damper Design for Vibration Mitigation of a Suspension Bridge

2020 ◽  
Vol 10 (2) ◽  
pp. 457 ◽  
Author(s):  
Fanhao Meng ◽  
Jiancheng Wan ◽  
Yongjun Xia ◽  
Yong Ma ◽  
Jingjun Yu

This paper proposes a synthetic approach to design and implement a two-degree of freedom tuned mass damper (2DOFs TMD), aimed at damping bending and torsional modes of bridge decks (it can also be applied to other types of bridges like cable-stayed bridges to realize the energy dissipation). For verifying the effectiveness of the concept model, we cast the parameter optimization of the 2DOFs TMDs conceptual model as a control problem with decentralized static output feedback for minimizing the response of the bridge deck. For designing the expected modes of the 2DOFs TMDs, the graphical approach was introduced to arrange flexible beams properly according to the exact constraints. Based on the optimized frequency ratios, the dimensions of 2DOF TMDs are determined by the compliance matrix method. Finally, the mitigation effect was illustrated and verified by an experimental test on the suspension bridge mock-up. The results showed that the 2DOFs TMD is an effective structural response mitigation device used to mitigate the response of suspension bridges. It was also observed that based on the proposed synthetic approach, 2DOFs TMD parameters can be effectively designed to realize the target modes control.

2019 ◽  
Vol 26 (11-12) ◽  
pp. 1054-1067 ◽  
Author(s):  
Seyyed Hossein Hossein Lavassani ◽  
Hamed Alizadeh ◽  
Peyman Homami

Suspension bridges are structures that because of their long span and high flexibility can be prone to ambient vibrations such as ground motions. They can experience high amplitude vibrations in torsional mode during an earthquake, where a vibration control strategy seems necessary. Recently, control systems have been widely used to mitigate vibration of structures. Tuned mass damper is a passive control system. Its performance and effectiveness have been verified both theoretically and practically. In this study, a tuned mass damper system is used to mitigate the torsional vibration of a suspension bridge. The Vincent Thomas suspension bridge is selected as a case study, and its response is reduced by a tuned mass damper under ten pulse-type records from 10 major worldwide earthquakes. By using sensitivity analysis, a parametric study is carried out to optimize tuned mass damper parameters, namely, mass ratio, gyration radius, tuning frequency, and damping ratio according to the maximum reduction of the response maxima. Finally, the optimum range of each parameter that can give the best performance and provide both operational and economic justification for the implementation of the project is suggested. The numerical results indicate that the optimized tuned mass damper system can substantially reduce the maximum response and vibration time.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Naif B. Almutairi ◽  
Mohamed Zribi ◽  
Mohamed Abdel-Rohman

This paper investigates the suppression of galloping in a suspension bridge due to wind loads. The galloping phenomenon can be destructive due to the high-amplitude oscillations of the structure. Two controllers are proposed to generate the control force needed to suppress the vertical galloping in the suspended cables and in the bridge deck. SIMULINK software is used to simulate the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a tuned mass damper.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Md Motiur Rahman ◽  
Tahmina Tasnim Nahar ◽  
Dookie Kim

This paper investigates the performance of tuned mass damper (TMD) and dynamic behavior of TMD-controlled concrete structure considering the ground motion (GM) characteristics based on frequency content. The effectiveness of TMD in reducing the structural response and probability of collapse of the building frames are affected by the frequency characteristics of GMs. To attenuate the seismic vibration of the buildings, the TMD controlled building has been designed based on the modal analysis (modal frequencies and modal mass participation ratio). In this study, to investigate the performance of TMD, four different heights (i.e., 3, 5, 10, 20 stories) inelastic concrete moment-resisting frames equipped with TMDs are developed using an open-source finite element software. A series of numerical analyses have been conducted using sixty earthquakes classified into three categories corresponding to low, medium, and high-frequency characteristics of GMs. To evaluate the proposed strategy, peak lateral displacements, inter-story drift, and the probability of collapse using fragility analysis have been investigated through the structures equipped with and without TMD. The results appraise the effect of TMD and compare the seismic responses of earthquake frequency contents and the vibration control system of the inelastic building frames.


2005 ◽  
Vol 128 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Lei Zuo ◽  
Samir A. Nayfeh

Whenever a tuned-mass damper is attached to a primary system, motion of the absorber body in more than one degree of freedom (DOF) relative to the primary system can be used to attenuate vibration of the primary system. In this paper, we propose that more than one mode of vibration of an absorber body relative to a primary system be tuned to suppress single-mode vibration of a primary system. We cast the problem of optimization of the multi-degree-of-freedom connection between the absorber body and primary structure as a decentralized control problem and develop optimization algorithms based on the H2 and H-infinity norms to minimize the response to random and harmonic excitations, respectively. We find that a two-DOF absorber can attain better performance than the optimal SDOF absorber, even for the case where the rotary inertia of the absorber tends to zero. With properly chosen connection locations, the two-DOF absorber achieves better vibration suppression than two separate absorbers of optimized mass distribution. A two-DOF absorber with a negative damper in one of its two connections to the primary system yields significantly better performance than absorbers with only positive dampers.


2013 ◽  
Vol 35 (3) ◽  
Author(s):  
Nguyen Van Khang ◽  
Trieu Quoc Loc ◽  
Nguyen Anh Tuan

There are problems in mechanical, structural and aerospace engineering that can be formulated as Nonlinear Programming. In this paper, the problem of parameters optimization of tuned mass damper for three-degree-of-freedom vibration systems is investigated using sequential quadratic programming method. The objective is to minimize the extreme vibration amplitude of vibration models. It is shown that the constrained formulation, that includes lower and upper bounds on the updating parameters in the form of inequality constraints, is important for obtaining a correct updated model.


2019 ◽  
Vol 22 (11) ◽  
pp. 2449-2463
Author(s):  
Jun Chen ◽  
Ziping Han ◽  
Ruotian Xu

Dozens of human-induced load models for individual walking and jumping have been proposed in the past decades by researchers and are recommended in various design guidelines. These models differ from each other in terms of function orders, coefficients, and phase angles. When designing structures subjected to human-induced loads, in many cases, a load model is subjectively selected by the design engineer. The effects of different models on prediction of structural responses and efficiency of vibration control devices such as a tuned mass damper, however, are not clear. This article investigates the influence of human-induced load models on performance of tuned mass damper in reducing floor vibrations. Extensive numerical simulations were conducted on a single-degree-of-freedom system with one tuned mass damper, whose dynamic responses to six walking and four jumping load models were calculated and compared. The results show a maximum three times difference in the acceleration responses among all load models. Acceleration response spectra of the single-degree-of-freedom system with and without a tuned mass damper were also computed and the response reduction coefficients were determined accordingly. Comparison shows that the reduction coefficient curves have nearly the same tendency for different load models and a tuned mass damper with 5% mass ratio is able to achieve 50%–75% response reduction when the structure’s natural frequency is in multiples of the walking or jumping frequency. All the results indicate that a proper load model is crucial for structural response calculation and consequently the design of tuned mass damper device.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Abdollah Javidialesaadi ◽  
Nicholas E. Wierschem

In this study, a novel passive vibration control device, the three-element vibration absorber–inerter (TEVAI) is proposed. Inerter-based vibration absorbers, which utilize a mass that rotates due to relative translational motion, have recently been developed to take advantage of the potential high inertial mass (inertance) of a relatively small mass in rotation. In this work, a novel configuration of an inerter-based absorber is proposed, and its effectiveness at suppressing the vibration of a single-degree-of-freedom system is investigated. The proposed device is a development of two current passive devices: the tuned-mass-damper–inerter (TMDI), which is an inerter-base tuned mass damper (TMD), and the three-element dynamic vibration absorber (TEVA). Closed-form optimization solutions for this device connected to a single-degree-of-freedom primary structure and loaded with random base excitation are developed and presented. Furthermore, the effectiveness of this novel device, in comparison to the traditional TMD, TEVA, and TMDI, is also investigated. The results of this study demonstrate that the TEVAI possesses superior performance in the reduction of the maximum and root-mean-square (RMS) response of the underlying structure in comparison to the TMD, TEVA, and TMDI.


Author(s):  
Andrew J. Dick ◽  
Aaron Atzil ◽  
Satish Nagarajaiah

Vibration attenuation devices are used to reduce the vibrations of various mechanical systems and structures. In this work, an analytical method is proposed to provide the means to investigate the influence of system parameters on the dynamic response of a system. The method of multiple scales is used to calculate an approximate broadband solution for a two degree-of-freedom system consisting of a linear primary structure and a nonlinear tuned mass damper. The model is decoupled, approximate analytical solutions are calculated, and then they are combined to produce the desired frequency-response information. The approach is initially applied to a linear two degree-of-freedom system in order to verify its performance. The approach is then applied to the nonlinear system in order to study how varying the values of parameters associated with the nonlinear absorber affect its ability to attenuate the response of the primary structure.


2020 ◽  
Vol 23 (12) ◽  
pp. 2626-2641
Author(s):  
Seyed Hossein Hosseini Lavasani ◽  
Hamed Alizadeh ◽  
Rouzbeh Doroudi ◽  
Peyman Homami

Suspension bridges due to their long span can experience large displacement response under dynamic loading like earthquakes. Unlike other structures, their vertical vibration may make remarkable difficulty that a control strategy seems to be essential. Tuned mass damper is a passive control system that can be changed to active one by adding an external source producing the active control force called active tuned mass damper. Unlike passive systems, active ones need a controller system affecting the performance of them considerably. In this study, the efficiency of tuned mass damper and active tuned mass damper are investigated in the bridges. Two controllers, fuzzy type 2 and fuzzy type 1, are used to estimate control force of active tuned mass damper. Tuned mass damper’s parameters are optimized under wide range of ground motions. Also, fuzzy type 2 and fuzzy type 1’s parameters are optimized under the influence of three different conditions containing far-field and near-field ground motions and also combination of them. In addition, Lion Pride Optimization Algorithm is selected for optimizing section. Numerical analysis indicates that active tuned mass damper is more effective than tuned mass damper, and also active tuned mass damper does not make any instability matter of concern in active control systems. Furthermore, performance of fuzzy type 2 is better than fuzzy type 1.


Sign in / Sign up

Export Citation Format

Share Document