scholarly journals Experimental and Numerical Analyses of Thermal Storage Tile-Bricks for Efficient Thermal Management of Buildings

Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 357
Author(s):  
Saqib Iqbal ◽  
Jianwei Tang ◽  
Gulfam Raza ◽  
Izzat Iqbal Cheema ◽  
Mohsin Ali Kazmi ◽  
...  

Due to the tremendous increase in the population and emerging energy crisis, the surging demand for the thermal management of buildings has become essential. Thermal management of buildings is of high importance for maintaining optimum thermal comfort and controlling the drastic environmental impacts. To avoid high energy consumption strategies and continuous operation such as active air heaters and air conditioners, passive strategies driven by phase change material-based thermal storage are expected to leverage the energy challenges. This work attempts to present the form-stabilized thermal storage tile-bricks (TSTBs) that are fabricated by a combination of octadecane, phosphogypsum, kaolin clay and cement. The optimal percent contents of each entity were found with respect to the design criterion of form-stability and effective temperature control capacity. Two TSTBs with a thickness of 10 mm and 15 mm were constructed, which are then applied on ordinary clay bricks to build a prototype wall. The optimal TSTBs are experimentally and numerically evaluated by subjecting them to transient thermal performance analysis, providing longer temperature retardation (~3000 s) compared with ordinary clay bricks (~400 s). It is thus implied that TSTBs can provide a viable solution against energy mismanagement by inhibiting the heating in summer and reserving the cold in winter.

2017 ◽  
Vol 10 ◽  
pp. 70-82 ◽  
Author(s):  
Morgana Vasconcellos Araújo ◽  
J.M.P.Q. Delgado ◽  
A.G. Barbosa de Lima

The manufacture of clay bricks goes through several phases, among which are clay wetting, molding, drying and firing. The drying process has a high energy consumption and the material needs to be dried with control for avoid it to be unusable after drying. Optimization of the drying process (reduction of process time and energy expenditure) is crucial for the ceramist industry. In this sense, this work aims to make a transient thermal study of the temperature distribution in an industrial brick due to the energy supply of drying-air flowing inner it turbulent regime. The study is performed through numerical simulation using the software ANSYS® CFX. Transient results are displayed in terms of fields of the temperature and air velocity, and temperature of the brick. It was concluded that the higher the velocity of flow of hot air, the faster the heat diffuses into the brick. Independent of air velocity, there are temperature gradients on the surface of the brick


2021 ◽  
Vol 198 ◽  
pp. 117503 ◽  
Author(s):  
Mohsen Akbarzadeh ◽  
Theodoros Kalogiannis ◽  
Joris Jaguemont ◽  
Lu Jin ◽  
Hamidreza Behi ◽  
...  

Author(s):  
Yu Hsien Wu ◽  
Kumar Srinivasan ◽  
Steven Patterson ◽  
Emmanuel Bot

The transient thermal simulation is an important part of thermal management development for new vehicle architectures. Different techniques have been studied in the past to address this coupled conduction/convection/radiation problem. In order to fully capture the transient thermal behavior of various underhood and underbody components, it is also necessary to accurately model the thermal mass of each part and the thermal links between dissimilar materials. The paper will outline a new, efficient methodology for this type of thermal analysis that shows acceptable results for complex full vehicle thermal analysis without sacrificing accuracy. The methodology is based on approximating the transient convective field with intermittent steady state solutions. The paper will present results from this new approach and compare them with fully transient simulation results as well as experimental data. The new methodology can be optimized to significantly reduce simulation run times without sacrificing accuracy and to be more practical for application in the vehicle development cycle.


2020 ◽  
Vol 70 (6) ◽  
pp. 596-602
Author(s):  
P.K. Mehta ◽  
A. Kumaraswamy ◽  
V. K. Saraswat ◽  
Praveen Kumar B.

Utilisation of propellant waste in fabrication of bricks is not only used as efficient waste disposal method but also to get better functional properties. In the present study, high energy propellant (HEP) waste additive mixed with soil and fly ash in different proportions during manufacturing of bricks has been investigated experimentally. X-ray diffraction (XRD) studies were carried out to confirm the brick formation and the effect of HEP waste. Ceramic bricks were fabricated with HEP waste additive in proper proportions i.e. 0.5 wt %, 1.0 wt %, 1.5 wt %, 2.0 wt %, 2.5 wt %, 3 wt %, 3.5 wt %, and 4 wt % and then evaluated for water absorption capability and compressive strength. Compressive strength of 6.7 N/mm2, and Water absorption of 22 % have been observed from modified fired bricks impregnated with HEM waste additive. Scanning electron microscopy (SEM) studies were carried out to analyze the effect of HEP waste additive on pore formation and distribution in the bricks. Further, the heat resulting from decomposition of propellants can cause a decrease in the energy required of baking process. The process of manufacturing of bricks with HEP waste additive is first of its kind till date.


Sign in / Sign up

Export Citation Format

Share Document