scholarly journals Evaluation of ALARO-0 and REMO Regional Climate Models over Iran Focusing on Building Material Degradation Criteria

Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 376
Author(s):  
Hamed Hedayatnia ◽  
Sara Top ◽  
Steven Caluwaerts ◽  
Lola Kotova ◽  
Marijke Steeman ◽  
...  

Understanding how climate change affects material degradation is the first step in heritage conservation. To study such impact, high-resolution climate information is required. However, so far, no regional climate simulations have been evaluated considering building damage criteria over the region of Iran. This paper has a twofold objective: to conduct an overview of climate model performance over Iran by evaluating the output of two regional climate models, ALARO-0 and REMO2015, and to find an optimal approach for model evaluation fitted to studies on building physics. Data of the evaluation run for both models were compared with data of weather stations located in six different climate zones in Iran to assess their performance over the region and gain insight about model uncertainties. Given that the research scope covers the evaluation of climate models to use in studies on building physics, in addition to climate parameters, five degradation risks are analysed. The performance of the two models varies over the studied locations. In general, both models fall within the spread of observations except for wind parameters. Accordingly, indices related to temperature and precipitation are well predicted, in contrast to indices related to wind. The analysis shows that considering the observed biases, selecting an ensemble of representative models based on the evaluation results of climate variables important for hygrothermal simulations would be recommended.

2015 ◽  
Vol 12 (3) ◽  
pp. 2657-2706 ◽  
Author(s):  
T. Olsson ◽  
J. Jakkila ◽  
N. Veijalainen ◽  
L. Backman ◽  
J. Kaurola ◽  
...  

Abstract. Assessment of climate change impacts on climate and hydrology on catchment scale requires reliable information about the average values and climate fluctuations of the past, present and future. Regional Climate Models (RCMs) used in impact studies often produce biased time series of meteorological variables. In this study bias correction of RCM temperature and precipitation for Finland is carried out using different versions of distribution based scaling (DBS) method. The DBS adjusted RCM data is used as input of a hydrological model to simulate changes in discharges in four study catchments in different parts of Finland. The annual mean discharges and seasonal variation simulated with the DBS adjusted temperature and precipitation data are sufficiently close to observed discharges in the control period (1961–2000) and produce more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data. Furthermore, with most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data during 1961–2100. However, if the biases in the mean or the SD of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections. The DBS method influences especially the projected seasonal changes in discharges and the use of uncorrected data can produce unrealistic seasonal discharges and changes. The projected changes in annual mean discharges are moderate or small, but seasonal distribution of discharges will change significantly.


1997 ◽  
Vol 25 ◽  
pp. 400-406 ◽  
Author(s):  
Martin Beniston ◽  
Wilfried Haeberli ◽  
Martin Hoelzle ◽  
Alan Taylor

While the capability of global and regional climate models in reproducing current climate has significantly improved over the past few years, the confidence in model results for remote regions, or those where complex orography is a dominant feature, is still relatively low. This is, in part, linked to the lack of observational data for model verification and intercomparison purposes.Glacier and permafrost observations are directly related to past and present energy flux patterns at the Earth-atmosphere interface and could be used as a proxy for air temperature and precipitation, particularly of value in remote mountain regions and boreal and Arctic zones where instrumental climate records are sparse or non-existent. It is particularly important to verify climate-model performance in these regions, as this is where most general circulation models (GCMs) predict the greatest changes in air temperatures in a warmer global climate.Existing datasets from glacier and permafrost monitoring sites in remote and high altitudes are described in this paper; the data could be used in model-verification studies, as a means to improving model performance in these regions.


2013 ◽  
Vol 17 (11) ◽  
pp. 4323-4337 ◽  
Author(s):  
M. A. Sunyer ◽  
H. J. D. Sørup ◽  
O. B. Christensen ◽  
H. Madsen ◽  
D. Rosbjerg ◽  
...  

Abstract. In recent years, there has been an increase in the number of climate studies addressing changes in extreme precipitation. A common step in these studies involves the assessment of the climate model performance. This is often measured by comparing climate model output with observational data. In the majority of such studies the characteristics and uncertainties of the observational data are neglected. This study addresses the influence of using different observational data sets to assess the climate model performance. Four different data sets covering Denmark using different gauge systems and comprising both networks of point measurements and gridded data sets are considered. Additionally, the influence of using different performance indices and metrics is addressed. A set of indices ranging from mean to extreme precipitation properties is calculated for all the data sets. For each of the observational data sets, the regional climate models (RCMs) are ranked according to their performance using two different metrics. These are based on the error in representing the indices and the spatial pattern. In comparison to the mean, extreme precipitation indices are highly dependent on the spatial resolution of the observations. The spatial pattern also shows differences between the observational data sets. These differences have a clear impact on the ranking of the climate models, which is highly dependent on the observational data set, the index and the metric used. The results highlight the need to be aware of the properties of observational data chosen in order to avoid overconfident and misleading conclusions with respect to climate model performance.


2015 ◽  
Vol 19 (7) ◽  
pp. 3217-3238 ◽  
Author(s):  
T. Olsson ◽  
J. Jakkila ◽  
N. Veijalainen ◽  
L. Backman ◽  
J. Kaurola ◽  
...  

Abstract. Assessment of climate change impacts on climate and hydrology on catchment scale requires reliable information about the average values and climate fluctuations of the past, present and future. Regional climate models (RCMs) used in impact studies often produce biased time series of meteorological variables. In this study bias correction (BC) of RCM temperature and precipitation for Finland is carried out using different versions of the distribution based scaling (DBS) method. The DBS-adjusted RCM data are used as input of a hydrological model to simulate changes in discharges of four study catchments in different parts of Finland. The annual mean discharges and seasonal variation simulated with the DBS-adjusted temperature and precipitation data are sufficiently close to observed discharges in the control period 1961–2000 and produce more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data. Furthermore, with most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data during 1961–2100. However, if the biases in the mean or the standard deviation of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections. The DBS method influences especially the projected seasonal changes in discharges and the use of uncorrected data can produce unrealistic seasonal discharges and changes. The projected changes in annual mean discharges are moderate or small, but seasonal distribution of discharges will change significantly.


1997 ◽  
Vol 25 ◽  
pp. 400-406 ◽  
Author(s):  
Martin Beniston ◽  
Wilfried Haeberli ◽  
Martin Hoelzle ◽  
Alan Taylor

While the capability of global and regional climate models in reproducing current climate has significantly improved over the past few years, the confidence in model results for remote regions, or those where complex orography is a dominant feature, is still relatively low. This is, in part, linked to the lack of observational data for model verification and intercomparison purposes.Glacier and permafrost observations are directly related to past and present energy flux patterns at the Earth-atmosphere interface and could be used as a proxy for air temperature and precipitation, particularly of value in remote mountain regions and boreal and Arctic zones where instrumental climate records are sparse or non-existent. It is particularly important to verify climate-model performance in these regions, as this is where most general circulation models (GCMs) predict the greatest changes in air temperatures in a warmer global climate.Existing datasets from glacier and permafrost monitoring sites in remote and high altitudes are described in this paper; the data could be used in model-verification studies, as a means to improving model performance in these regions.


2017 ◽  
Vol 48 (5) ◽  
pp. 1363-1377 ◽  
Author(s):  
Olle Räty ◽  
Hanna Virta ◽  
Thomas Bosshard ◽  
Chantal Donnelly

We analyze the importance of regional climate models (GCM-RCMs) and model output statistics (MOS) methods as uncertainty sources for future changes of various hydrological variables in Scandinavia. The Hydrological Predictions for the Environment (HYPE) model, driven with daily mean temperature and precipitation, is used to simulate changes in river discharges and other hydrological components from the present-day climate (1980–2009) to mid-21st century conditions (2041–2070). The results show that GCM-RCM differences explain most of the spread in the simulated changes in the annual mean cycle of river discharge. At seasonal level, MOS-method uncertainties are most important during the winter and spring, which is likely explained by the sensitivity of snow processes to the representation of daily variability in the MOS methods. To gain physical insights into the physical processes, the relative importance of changes to temperature or precipitation on changes in surface hydrology are also assessed. In most regions of Scandinavia, changes to temperature explain most of the changes in river discharge volumes and spring peaks. Precipitation changes only have a secondary role in modulating these changes. Again, these results are mostly explained by changes in snow processes in winter and increases in evapotranspiration in summer.


Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2021 ◽  
Author(s):  
Jeremy Carter ◽  
Amber Leeson ◽  
Andrew Orr ◽  
Christoph Kittel ◽  
Melchior van Wessem

<p>Understanding the surface climatology of the Antarctic ice sheet is essential if we are to adequately predict its response to future climate change. This includes both primary impacts such as increased ice melting and secondary impacts such as ice shelf collapse events. Given its size, and inhospitable environment, weather stations on Antarctica are sparse. Thus, we rely on regional climate models to 1) develop our understanding of how the climate of Antarctica varies in both time and space and 2) provide data to use as context for remote sensing studies and forcing for dynamical process models. Given that there are a number of different regional climate models available that explicitly simulate Antarctic climate, understanding inter- and intra model variability is important.</p><p>Here, inter- and intra-model variability in Antarctic-wide regional climate model output is assessed for: snowfall; rainfall; snowmelt and near-surface air temperature within a cloud-based virtual lab framework. State-of-the-art regional climate model runs from the Antarctic-CORDEX project using the RACMO, MAR and MetUM models are used, together with the ERA5 and ERA-Interim reanalyses products. Multiple simulations using the same model and domain boundary but run at either different spatial resolutions or with different driving data are used. Traditional analysis techniques are exploited and the question of potential added value from more modern and involved methods such as the use of Gaussian Processes is investigated. The advantages of using a virtual lab in a cloud based environment for increasing transparency and reproducibility, are demonstrated, with a view to ultimately make the code and methods used widely available for other research groups.</p>


2018 ◽  
Vol 22 (6) ◽  
pp. 3175-3196 ◽  
Author(s):  
Mathieu Vrac

Abstract. Climate simulations often suffer from statistical biases with respect to observations or reanalyses. It is therefore common to correct (or adjust) those simulations before using them as inputs into impact models. However, most bias correction (BC) methods are univariate and so do not account for the statistical dependences linking the different locations and/or physical variables of interest. In addition, they are often deterministic, and stochasticity is frequently needed to investigate climate uncertainty and to add constrained randomness to climate simulations that do not possess a realistic variability. This study presents a multivariate method of rank resampling for distributions and dependences (R2D2) bias correction allowing one to adjust not only the univariate distributions but also their inter-variable and inter-site dependence structures. Moreover, the proposed R2D2 method provides some stochasticity since it can generate as many multivariate corrected outputs as the number of statistical dimensions (i.e., number of grid cell  ×  number of climate variables) of the simulations to be corrected. It is based on an assumption of stability in time of the dependence structure – making it possible to deal with a high number of statistical dimensions – that lets the climate model drive the temporal properties and their changes in time. R2D2 is applied on temperature and precipitation reanalysis time series with respect to high-resolution reference data over the southeast of France (1506 grid cell). Bivariate, 1506-dimensional and 3012-dimensional versions of R2D2 are tested over a historical period and compared to a univariate BC. How the different BC methods behave in a climate change context is also illustrated with an application to regional climate simulations over the 2071–2100 period. The results indicate that the 1d-BC basically reproduces the climate model multivariate properties, 2d-R2D2 is only satisfying in the inter-variable context, 1506d-R2D2 strongly improves inter-site properties and 3012d-R2D2 is able to account for both. Applications of the proposed R2D2 method to various climate datasets are relevant for many impact studies. The perspectives of improvements are numerous, such as introducing stochasticity in the dependence itself, questioning its stability assumption, and accounting for temporal properties adjustment while including more physics in the adjustment procedures.


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 262 ◽  
Author(s):  
Coraline Wyard ◽  
Sébastien Doutreloup ◽  
Alexandre Belleflamme ◽  
Martin Wild ◽  
Xavier Fettweis

The use of regional climate models (RCMs) can partly reduce the biases in global radiative flux (Eg↓) that are found in reanalysis products and global models, as they allow for a finer spatial resolution and a finer parametrisation of surface and atmospheric processes. In this study, we assess the ability of the MAR («Modèle Atmosphérique Régional») RCM to reproduce observed changes in Eg↓, and we investigate the added value of MAR with respect to reanalyses. Simulations were performed at a horizontal resolution of 5 km for the period 1959–2010 by forcing MAR with different reanalysis products: ERA40/ERA-interim, NCEP/NCAR-v1, ERA-20C, and 20CRV2C. Measurements of Eg↓ from the Global Energy Balance Archive (GEBA) and from the Royal Meteorological Institute of Belgium (RMIB), as well as cloud cover observations from Belgocontrol and RMIB, were used for the evaluation of the MAR model and the forcing reanalyses. Results show that MAR enables largely reducing the mean biases that are present in the reanalyses. The trend analysis shows that only MAR forced by ERA40/ERA-interim shows historical trends, which is probably because the ERA40/ERA-interim has a better horizontal resolution and assimilates more observations than the other reanalyses that are used in this study. The results suggest that the solar brightening observed since the 1980s in Belgium has mainly been due to decreasing cloud cover.


Sign in / Sign up

Export Citation Format

Share Document