scholarly journals Clonal Heterogeneity Reflected by PI3K-AKT-mTOR Signaling in Human Acute Myeloid Leukemia Cells and Its Association with Adverse Prognosis

Cancers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 332 ◽  
Author(s):  
Ina Nepstad ◽  
Kimberley Joanne Hatfield ◽  
Tor Henrik Anderson Tvedt ◽  
Håkon Reikvam ◽  
Øystein Bruserud

Clonal heterogeneity detected by karyotyping is a biomarker associated with adverse prognosis in acute myeloid leukemia (AML). Constitutive activation of the phosphatidylinositol-3-kinase-Akt-mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway is present in AML cells, and this pathway integrates signaling from several upstream receptors/mediators. We suggest that this pathway reflects biologically important clonal heterogeneity. We investigated constitutive PI3K-Akt-mTOR pathway activation in primary human AML cells derived from 114 patients, together with 18 pathway mediators. The cohort included patients with normal karyotype or single karyotype abnormalities and with an expected heterogeneity of molecular genetic abnormalities. Clonal heterogeneity reflected as pathway mediator heterogeneity was detected for 49 patients. Global gene expression profiles of AML cell populations with and without clonal heterogeneity differed with regard to expression of ectopic olfactory receptors (a subset of G-protein coupled receptors) and proteins involved in G-protein coupled receptor signaling. Finally, the presence of clonal heterogeneity was associated with adverse prognosis for patients receiving intensive antileukemic treatment. The clonal heterogeneity as reflected in the activation status of selected mediators in the PI3K-Akt-mTOR pathway was associated with a different gene expression profile and had an independent prognostic impact. Biological heterogeneity reflected in the intracellular signaling status should be further investigated as a prognostic biomarker in human AML.

QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
H M S Afifi ◽  
R A Elgamal ◽  
H M Abdelbary ◽  
M A Rashad

Abstract Background Acute myeloid leukemia (AML) is a heterogeneous marrow-based clonal group of neoplasms that affects hematopoietic cells responsible for the production of myeloid lineages. Prognosis of AML is multifactorial and has been extensively studied, yet it’s highly dependent on the presence of leukemic stem cells (LSCs). G protein–coupled receptor 56 (GPR56) was introduced as a novel human LSC marker in AML patients as acknowledged by the engraftment potential of GPR56+ cells sorted from selected AML specimens, which contributed to leukemia propagation in mice. Aim of the work The aim of this study is to analyze GPR56 expression in de novo AML patients using flow cytometry. The results of GPR56 expression will be correlated with the clinical outcome of the patients as well as other laboratory parameters. Subjects and Methods The study was carried out at Ain Shams University hospitals on a total number of 40 AML patients attending hematology-oncology unit during the period from November 2016 to July 2017, in addition to 20 healthy control subjects. Patients were assessed at day 28 after induction of treatment by bone marrow examination and minimal residual disease analysis, and follow up of the disease course was done. Results GPR56 was highly expressed above mean in 62.5% of AML patients. High values were significantly related to failure to attain complete remission, whereas it lacked prognostic significance to patient outcome and cytogenetic subgroups. Conclusion The poor prognostic impact of GPR56 was partially validated in our study. Recommendations Flow cytometric evaluation of GPR56 should be incorporated into the initial laboratory work-up for all newly diagnosed AML patients.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5228-5228
Author(s):  
Genki Yamato ◽  
Hiroki Yamaguchi ◽  
Hiroshi Handa ◽  
Norio Shiba ◽  
Satoshi Wakita ◽  
...  

Abstract Background Acute myeloid leukemia (AML) is a complex disease caused by various genetic alterations. Some prognosis-associated cytogenetic aberrations or gene mutations such as FLT3-internal tandem duplication (ITD), t(8;21)(q22;q22)/RUNX1-RUNX1T1, and inv(16)(p13q22)/CBFB-MYH11 have been found and used to stratify the risk. Numerous gene mutations have been implicated in the pathogenesis of AML, including mutations of DNMT3A, IDH1/2, TET2 and EZH2 in addition to RAS, KIT, NPM1, CEBPA and FLT3in the recent development of massively parallel sequencing technologies. However, even after incorporating these molecular markers, the prognosis is unclear in a subset of AML patients. Recently, NUP98-NSD1 fusion gene was identified as a poor prognostic factor for AML. We have reported that all pediatric AML patients with NUP98-NSD1 fusion showed high expression of the PR domain containing 16 (PRDM16; also known as MEL1) gene, which is a zinc finger transcription factor located near the breakpoint at 1p36. PRDM16 is highly homologous to MDS1/EVI1, which is an alternatively spliced transcript of EVI1. Furthermore, PRDM16 is essential for hematopoietic stem cell maintenance and remarkable as a candidate gene to induce leukemogenesis. Recent reports revealed that high PRDM16 expression was a significant marker to predict poor prognosis in pediatric AML. However, the significance of PRDM16 expression is unclear in adult AML patients. Methods A total of 151 adult AML patients (136 patients with de novo AML and 15 patients with relapsed AML) were analyzed. They were referred to our institution between 2004 and 2015 and our collaborating center between 1996 and 2013. The median length of follow-up for censored patients was 30.6 months. Quantitative RT-PCR analysis was performed using the 7900HT Fast Real Time PCR System with TaqMan Gene Expression Master Mix and TaqMan Gene Expression Assay. In addition to PRDM16, ABL1 was also evaluated as a control gene. We investigated the correlations between PRDM16 gene expression and other genetic alterations, such as FLT3-ITD, NPM1, and DNMT3A, and clarified the prognostic impact of PRDM16 expression in adult AML patients. Mutation analyses were performed by direct sequence analysis, Mutation Biased PCR, and the next-generation sequencer Ion PGM. Results PRDM16 overexpression was identified in 29% (44/151) of adult AML patients. High PRDM16 expression correlated with higher white blood cell counts in peripheral blood and higher blast ratio in bone marrow at diagnosis; higher coincidence of mutation in NPM1 (P = 0.003) and DNMT3A (P = 0.009); and lower coincidence of t(8;21) (P = 0.010), low-risk group (P = 0.008), and mutation in BCOR (P = 0.049). Conversely, there were no significant differences in age at diagnosis and sex distribution. Patients with high PRDM16 expression tended to be low frequency in M2 (P = 0.081) subtype, and the remaining subtype had no significant differences between high and low PRDM16 expression. Remarkably, PRDM16 overexpression patients were frequently observed in non-complete remission (55.8% vs. 26.3%, P = 0.001). Patients with high PRDM16 expression tended to have a cumulative incidence of FLT3-ITD (37% vs. 21%, P = 0.089) and MLL-PTD (15% vs. 5%, P = 0.121). We analyzed the prognosis of 139 patients who were traceable. The overall survival (OS) and median survival time (MST) of patients with high PRDM16 expression were significantly worse than those of patients with low expression (5-year OS, 17% vs. 32%; MST, 287 days vs. 673 days; P = 0.004). This trend was also significant among patients aged <65 years (5-year OS, 25% vs. 48%; MST, 361 days vs. 1565 days, P = 0.013). Moreover, high PRDM16 expression was a significant prognostic factor for FLT3-ITD negative patients aged < 65 years in the intermediate cytogenetic risk group (5-year OS, 29% vs. 58%; MST, 215 days vs. undefined; P = 0.032). Conclusions We investigated the correlations among PRDM16 expression, clinical features, and other genetic alterations to reveal clinical and prognostic significance. High PRDM16 expression was independently associated with non-CR and adverse outcomes in adult AML patients, as well as pediatric AML patients. Our finding indicated that the same pathogenesis may exist in both adult and pediatric AML patients with respect to PRDM16 expression, and measuring PRDM16 expression was a powerful tool to predict the prognosis of adult AML patients. Disclosures Inokuchi: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria; Pfizer: Honoraria.


2010 ◽  
Vol 28 (4) ◽  
pp. 570-577 ◽  
Author(s):  
Annika Dufour ◽  
Friederike Schneider ◽  
Klaus H. Metzeler ◽  
Eva Hoster ◽  
Stephanie Schneider ◽  
...  

Purpose CEBPA mutations are found as either biallelic (biCEBPA) or monoallelic (moCEBPA). We set out to explore whether the kind of CEBPA mutation is of prognostic relevance in cytogenetically normal (CN) acute myeloid leukemia (AML). Patients and Methods Four hundred sixty-seven homogeneously treated patients with CN-AML were subdivided into moCEBPA, biCEBPA, and wild-type (wt) CEBPA patients. The subgroups were analyzed for clinical parameters and for additional mutations in the NPM1, FLT3, and MLL genes. Furthermore, we obtained gene expression profiles using oligonucleotide microarrays. Results Only patients with biCEBPA had an improved median overall survival when compared with patients with wtCEBPA (not reached v 20.4 months, respectively; P = .018), whereas patients with moCEBPA (20.9 months) and wtCEBPA had a similar outcome (P = .506). Multivariable analysis confirmed biCEBPA, but not moCEBPA, mutations as an independent favorable prognostic factor. Interestingly, biCEBPA mutations, compared with wtCEBPA, were never associated with mutated NPM1 (0% v 43%, respectively; P < .001) and rarely associated with FLT3 internal tandem duplication (ITD; 5% v 23%, respectively; P = .059), whereas patients with moCEBPA had a similar frequency of mutated NPM1 and a significantly higher association with FLT3-ITD compared with patients with wtCEBPA (44% v 23%, respectively; P = .037). Furthermore, patients with biCEBPA showed a homogeneous gene expression profile that was characterized by downregulation of HOX genes, whereas patients with moCEBPA showed greater heterogeneity in their gene expression profiles. Conclusion Biallelic disruption of the N and C terminus of CEBPA is required for the favorable clinical outcome of CEBPA-mutated patients and represents a distinct molecular subtype of CN-AML with a different frequency of associated gene mutations. These findings are of great significance for risk-adapted therapeutic strategies in AML.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 91-91
Author(s):  
Nicolas Goardon ◽  
Emmanuele Marchi ◽  
Lynn Quek ◽  
Anna Schuh ◽  
Petter Woll ◽  
...  

Abstract Abstract 91 In normal and leukemic hemopoiesis, stem cells differentiate through intermediate progenitors into terminal cells. In human Acute Myeloid Leukemia (AML), there is uncertainty about: (i) whether there is more than one leukemic stem cell (LSC) population in any one individual patient; (ii) how homogeneous AML LSCs populations are at a molecular and cellular level and (iii) the relationship between AML LSCs and normal stem/progenitor populations. Answers to these questions will clarify the molecular pathways important in the stepwise transformation of normal HSCs/progenitors. We have studied 82 primary human CD34+ AML samples (spanning a range of FAB subtypes, cytogenetic categories and FLT3 and NPM1 mutation states) and 8 age-matched control marrow samples. In ∼80% of AML cases, two expanded populations with hemopoietic progenitor immunophenotype coexist in most patients. One population is CD34+CD38-CD90-CD45RA+ (CD38-CD45RA+) and the other CD34+CD38+CD110-CD45RA+ (GMP-like). Both populations from 7/8 patients have leukemic stem cell (LSC) activity in primary and secondary xenograft assays with no LSC activity in CD34- compartment. The two CD34+ LSC populations are hierarchically ordered, with CD38-CD45RA+ LSC giving rise to CD38+CD45RA+ LSC in vivo and in vitro. Limit dilution analysis shows that CD38-CD45RA+LSCs are more potent by 8–10 fold. From 18 patients, we isolated both CD38-CD45RA+ and GMP-like LSC populations. Global mRNA expression profiles of FACS-sorted CD38-CD45RA+ and GMP-like populations from the same patient allowed comparison of the two populations within each patient (negating the effect of genetic/epigenetic changes between patients). Using a paired t-test, 748 genes were differentially expressed between CD38-CD45RA+ and GMP-like LSCs and separated the two populations in most patients in 3D PCA. This was confirmed by independent quantitative measures of difference in gene expression using a non-parametric rank product analysis with a false discovery rate of 0.01. Thus, the two AML LSC populations are molecularly distinct. We then compared LSC profiles with those from 4 different adult marrow normal stem/progenitor cells to identify the normal stem/progenitor cell populations which the two AML LSC populations are most similar to at a molecular level. We first obtained a 2626 gene set by ANOVA, that maximally distinguished normal stem and progenitor populations. Next, the expression profiles of 22 CD38-CD45RA+ and 21 GMP-like AML LSC populations were distributed by 3D PCA using this ANOVA gene set. This showed that AML LSCs were most closely related to their normal counterpart progenitor population and not normal HSC. This data was confirmed quantitatively by a classifier analysis and hierarchical clustering. Taken together, the two LSC populations are hierarchically ordered, molecularly distinct and their gene expression profiles do not map most closely to normal HSCs but rather to their counterpart normal progenitor populations. Finally, as global expression profiles of CD38-CD45RA+ AML LSC resemble normal CD38-CD45RA+ cells, we defined the functional potential of these normal cells. This had not been previously determined. Using colony and limiting dilution liquid culture assays, we showed that single normal CD38-CD45RA+ cells have granulocyte and macrophage (GM), lymphoid (T and B cell) but not megakaryocyte-erythroid (MK-E) potential. Furthermore, gene expression studies on 10 cells showed that CD38-CD45RA+ cells express lymphoid and GM but not Mk-E genes. Taken together, normal CD38-CD45RA+ cells are most similar to mouse lymphoid primed multi-potential progenitor cells (LMPP) cells and distinct from the recently identified human Macrophage Lymphoid progenitor (MLP) population. In summary, for the first time, we show the co-existence of LMPP-like and GMP-like LSCs in CD34+ AML. Thus, CD34+ AML is a progenitor disease where LSCs have acquired abnormal self-renewal potential (Figure 1). Going forward, this work provides a platform for determining pathological LSCs self-renewal and tracking LSCs post treatment, both of which will impact on leukemia biology and therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (23) ◽  
pp. 4847-4858 ◽  
Author(s):  
Kunju Sridhar ◽  
Douglas T. Ross ◽  
Robert Tibshirani ◽  
Atul J. Butte ◽  
Peter L. Greenberg

AbstractMicroarray analysis with 40 000 cDNA gene chip arrays determined differential gene expression profiles (GEPs) in CD34+ marrow cells from myelodysplastic syndrome (MDS) patients compared with healthy persons. Using focused bioinformatics analyses, we found 1175 genes significantly differentially expressed by MDS versus normal, requiring a minimum of 39 genes to separately classify these patients. Major GEP differences were demonstrated between healthy and MDS patients and between several MDS subgroups: (1) those whose disease remained stable and those who subsequently transformed (tMDS) to acute myeloid leukemia; (2) between del(5q) and other MDS patients. A 6-gene “poor risk” signature was defined, which was associated with acute myeloid leukemia transformation and provided additive prognostic information for International Prognostic Scoring System Intermediate-1 patients. Overexpression of genes generating ribosomal proteins and for other signaling pathways was demonstrated in the tMDS patients. Comparison of del(5q) with the remaining MDS patients showed 1924 differentially expressed genes, with underexpression of 1014 genes, 11 of which were within the 5q31-32 commonly deleted region. These data demonstrated (1) GEPs distinguishing MDS patients from healthy and between those with differing clinical outcomes (tMDS vs those whose disease remained stable) and cytogenetics [eg, del(5q)]; and (2) molecular criteria refining prognostic categorization and associated biologic processes in MDS.


2006 ◽  
Vol 103 (4) ◽  
pp. 1030-1035 ◽  
Author(s):  
S. Lee ◽  
J. Chen ◽  
G. Zhou ◽  
R. Z. Shi ◽  
G. G. Bouffard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document