scholarly journals The Disruption of the β-Catenin/TCF-1/STAT3 Signaling Axis by 4-Acetylantroquinonol B Inhibits the Tumorigenesis and Cancer Stem-Cell-Like Properties of Glioblastoma Cells, In Vitro and In Vivo

Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 491 ◽  
Author(s):  
Heng-Wei Liu ◽  
Yu-Kai Su ◽  
Oluwaseun Bamodu ◽  
Dueng-Yuan Hueng ◽  
Wei-Hwa Lee ◽  
...  

Background: Glioblastoma (GBM), a malignant form of glioma, is characterized by resistance to therapy and poor prognosis. Accumulating evidence shows that the initiation, propagation, and recurrence of GBM is attributable to the presence of GBM stem cells (GBM-CSCs). Experimental approach: Herein, we investigated the effect of 4-Acetylantroquinonol B (4-AAQB), a bioactive isolate of Antrodia cinnamomea, on GBM cell viability, oncogenic, and CSCs-like activities. Results: We observed that aberrant expression of catenin is characteristic of GBM, compared to other glioma types (p = 0.0001, log-rank test = 475.2), and correlates with poor prognosis of GBM patients. Lower grade glioma and glioblastoma patients (n = 1152) with low catenin expression had 25% and 21.5% better overall survival than those with high catenin expression at the 5 and 10-year time-points, respectively (p = 3.57e-11, log-rank test = 43.8). Immunohistochemistry demonstrated that compared with adjacent non-tumor brain tissue, primary and recurrent GBM exhibited enhanced catenin expression (~10-fold, p < 0.001). Western blot analysis showed that 4-AAQB significantly downregulated β-catenin and dysregulated the catenin/LEF1/Stat3 signaling axis in U87MG and DBTRG-05MG cells, dose-dependently. 4-AAQB–induced downregulation of catenin positively correlated with reduced Sox2 and Oct4 nuclear expression in the cells. Furthermore, 4-AAQB markedly reduced the viability of U87MG and DBTRG-05MG cells with 48 h IC50 of 9.2 M and 12.5 M, respectively, effectively inhibited the nuclear catenin, limited the migration and invasion of GBM cells, with concurrent downregulation of catenin, vimentin, and slug; similarly, colony and tumorsphere formation was significantly attenuated with reduced expression of c-Myc and KLF4 proteins. Conclusions: Summarily, we show for the first time that 4-AAQB suppresses the tumor-promoting catenin/LEF1/Stat3 signaling, and inhibited CSCs-induced oncogenic activities in GBM in vitro, with in vivo validation; thus projecting 4-AAQB as a potent therapeutic agent for anti-GBM target therapy.

2021 ◽  
Vol 11 ◽  
Author(s):  
Meng-ke Fan ◽  
Guo-chuan Zhang ◽  
Wei Chen ◽  
Li-li Qi ◽  
Ming-fang Xie ◽  
...  

Recurrence and metastasis are important features of osteosarcoma (OS) that cause its poor prognosis. Aberrant expression of Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been reported in various kinds of cancers. However, the expression and function of Siglec-15 in OS remain unclear. In cultured OS cells (143B cells and MNNG/HOS cells) and their xenograft mouse models, we found that downregulation of Siglec-15 could inhibit the proliferation, migration and invasion of by inducing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Conversely, Siglec-15 overexpression promoted the growth, migration and invasion of OS cells in a significant manner. Then, we screened a number of differentially expressed genes (DEGs) between Siglec-15-knockdown group and control group by RNA-Seq assay. Among these DEGs, we found that dual-specificity phosphatase 1 (DUSP1/MKP1) was significantly downregulated after Siglec-15 silencing. We investigated the DUSP1 functions in influencing OS cells’ biology, and found that the proliferation, migration and invasion of OS cells were promoted by overexpressing DUSP1 and crucially, the proliferation, migration and invasion of Siglec-15-knockdown OS cells were rescued by overexpressing DUSP1. Mechanically, we further showed that DUSP1-mediated inhibition of p38/MAPK and JNK/MAPK expression was attenuated when Siglec-15 expression was inhibited, suggesting that Siglec-15 promotes the malignant progression of OS cells by suppressing DUSP1-mediated suppression of the MAPK pathway. Moreover, we showed that both Siglec-15 and DUSP1 were highly expressed in human OS tissues by immunohistochemistry. High Siglec-15 expression was associated with OS lung metastasis, and high DUSP1 expression was associated with the high Enneking stage. Kaplan–Meier analysis indicated that high expression of Siglec-15 could predict poor prognosis of OS patients. Altogether, these results showed that Siglec-15 expression promoted OS development and progression by activating DUSP1 and might be a novel target in OS treatment.


2018 ◽  
Vol 50 (2) ◽  
pp. 612-628 ◽  
Author(s):  
Yaodong Zhang ◽  
Guwei Ji ◽  
Sheng Han ◽  
Zicheng Shao ◽  
Zefa Lu ◽  
...  

Background/Aims: Aberrant expression of Tip60 is associated with progression in many cancers. However, the role of Tip60 in cancer progression remains contradictory. The aim of this study was to investigate the clinical significance, biological functions and underlying mechanisms of Tip60 deregulation in cholangiocarcinoma (CCA) for the first time. Methods: Quantitative real-time PCR (QRT-PCR), western blotting and immunohistochemistry staining (IHC) were carried out to measure Tip60 expression in CCA tissues and cell lines. Kaplan–Meier analysis and the log-rank test were used for survival analysis. In vitro, cell proliferation was evaluated by flow cytometry and CCK-8, colony formation, and EDU assays. Migration/ invasion was evaluated by trans-well assays. Phosphokinase array was used to confirm the dominant signal regulated by Tip60. Tumor growth and metastasis were demonstrated in vivo using a mouse model. Results: Tip60 was notably downregulated in CCA tissues, which was associated with greater tumor size, venous invasion, and TNM stage. Down-regulation of Tip60 was associated with tumor progression and poorer survival in CCA patients. In vitro and in vivo studies demonstrated that Tip60 suppressed growth and metastasis throughout the progression of CCA. We further identified the PI3K/AKT pathway as a dominant signal of Tip60 and suggested that Tip60 regulated CCA cell proliferation and metastasis via PT3K-AKT pathway. Pearson analysis revealed that PTEN was positively correlated with the Tip60 level in CCA tissues. Conclusion: Tip60, as a tumor suppressor in CCA via the PI3K/AKT pathway, might be a promising therapeutic target or prognostic marker for CCA.


2018 ◽  
Vol 243 (7) ◽  
pp. 645-654 ◽  
Author(s):  
Yi-Quan Yan ◽  
Juan Xie ◽  
Jing-Fu Wang ◽  
Zhao-Feng Shi ◽  
Xiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most malignant diseases worldwide. The unfavorable clinical outcome and poor prognosis are due to high rates of recurrence and metastasis after treatments. Some scholars of traditional Chinese medicine suggested that endogenous wind-evil had played an important role in metastasis of malignant tumor. Therefore, the drug of dispelling wind-evil could be used to prevent cancer metastasis and improve the poor prognosis. So we wondered whether Scorpion, one of the most important wind calming drugs, has antitumor effect especially in epithelial–mesenchymal transition (EMT) and metastasis of HCC in this research. We found that Scorpion-medicated serum could inhibit proliferation, induce apoptosis, and decrease migration and invasion capacity of Hepa1-6 cells in vitro. Meanwhile, we observed that water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT, which is characterized by increased epithelial marker E-cadherin expression and decreased mesenchymal markers N-cadherin and Snail expression following Scorpion treatment both in vitro and in vivo. These results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis. Impact statement The unfavorable clinical outcome and poor prognosis of hepatocellular carcinoma (HCC) are due to high rates of recurrence and metastasis after treatments. Here we found Scorpion, one of the most important wind calming drugs, has antitumor effect. Scorpion-medicated serum inhibited the proliferation, induced apoptosis, and decreased migration and invasion capacity of Hepa1-6 cells in vitro. Water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT of HCC both in vitro and in vivo. Our results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis.


2022 ◽  
Vol 22 ◽  
Author(s):  
Meng Li ◽  
Jiang Chang ◽  
Honglin Ren ◽  
Defeng Song ◽  
Jian Guo ◽  
...  

Background Increased CCKBR expression density or frequency has been reported in many neoplasms. Objective We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. Methods A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Wound-healing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. Results Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. Conclusion The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Wenjing Shang ◽  
Zhongdong Xie ◽  
Fengying Lu ◽  
Daoquan Fang ◽  
Tianbin Tang ◽  
...  

Background. Thioredoxin-1 (Trx-1) is a small redox protein, which plays an important role in many biological processes. Although increased expression of Trx-1 in various solid tumors has been reported, the prognostic significance and function of Trx-1 in human gastric cancer (GC) are still unclear. Here, we investigated the clinical and prognostic significance of Trx-1 expression and the function and mechanism of Trx-1 in human GC. Methods. We analyzed Trx-1 mRNA expression from the GEO database and Trx-1 protein expression in 144 GC tissues using immunohistochemistry. Effects of Trx-1 on GC cell were assessed in vitro and in vivo through Trx-1 knockdown or overexpression. The antitumor effects of the Trx-1 inhibitor, PX-12, on GC cells were investigated. PTEN and p-AKT expressions were evaluated by Western blotting. Results. Increased Trx-1 expression was found in GC tissues and associated with poor prognosis and aggressive clinicopathological characteristics in patients with GC. High Trx-1 expression predicted poor prognosis, and its expression was an independent prognostic factor for overall survival of GC patients. Knockdown of Trx-1 expression inhibited GC cell growth, migration, and invasion in vitro and tumor growth and lung metastasis in vivo. Conversely, overexpression of Trx-1 promoted GC cell growth, migration, and invasion. We also found that PX-12 inhibited GC cell growth, migration, and invasion. Overexpression of Trx-1 caused a decrease in PTEN and increase in p-AKT levels whereas silencing Trx-1 caused an increase in PTEN and decrease in p-AKT levels in GC cells. Inhibition of AKT signaling pathway by MK2206 also inhibited GC cell growth, migration, and invasion. Conclusion. Our results indicate that Trx-1 may be a promising prognostic indicator and therapeutic target for GC patients.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Binlong Zhong ◽  
Deyao Shi ◽  
Fashuai Wu ◽  
Shangyu Wang ◽  
Hongzhi Hu ◽  
...  

Abstract Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.


2015 ◽  
Vol 26 (8) ◽  
pp. 1416-1427 ◽  
Author(s):  
Wei Cui ◽  
Zhijun Huang ◽  
Hongjuan He ◽  
Ning Gu ◽  
Geng Qin ◽  
...  

The aberrant expression of microRNAs (miRNAs) has frequently been reported in cancer studies; miRNAs play roles in development, progression, metastasis, and prognosis. Recent studies indicate that the miRNAs within the Dlk1-Dio3 genomic region are involved in the development of liver cancer, but the role of miR-1188 in hepatocellular carcinoma (HCC) and the pathway by which it exerts its function remain largely unknown. Here we demonstrate that miR-1188 is significantly down-regulated in mouse hepatoma cells compared with normal liver tissues. Enhanced miR-1188 suppresses cell proliferation, migration, and invasion in vitro and inhibits the tumor growth of HCC cells in vivo. Moreover, overexpressed miR-1188 promotes apoptosis, enhances caspase-3 activity, and also up-regulates the expression of Bax and p53. MiR-1188 directly targets and negatively regulates Bcl-2 and Sp1. Silencing of Bcl-2 and Sp1 exactly copies the proapoptotic and anti-invasive effects of miR-1188, respectively. The expression of apoptosis- and invasion-related genes, such as Vegfa, Fgfr1, and Rprd1b, decreases after enhancement of miR-1188, as determined by gene expression profiling analysis. Taken together, our results highlight an important role for miR-1188 as a tumor suppressor in hepatoma cells and imply its potential role in cancer therapy.


2018 ◽  
Vol 45 (5) ◽  
pp. 1904-1914 ◽  
Author(s):  
Hui Ye ◽  
Jinkuang Lin ◽  
Xuedong Yao ◽  
Yizhong Li ◽  
Xiaobin Lin ◽  
...  

Background/Aims: Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) play critical regulatory roles in cancers, including osteosarcoma. A previous study showed that Nicotinamide Nucleotide Transhydrogenase-antisense RNA1 (NNT-AS1) was aberrantly expressed in several types of cancer. However, the potential biological roles and regulatory mechanisms of NNT-AS1 in osteosarcoma progression remain unknown. Methods: Quantitative RT-PCR was performed to examine the expression of NNT-AS1 in human tissues and cells. The biological functions of NNT-AS1 were determined by CCK-8, colony formation, Flow cytometry and Transwell assays in vitro. A mouse xenograft model was performed to investigate the effect of NNT-AS1 on tumor growth in vivo. Results: In this study, we found the expression of NNT-AS1 was significantly increased in tumor tissues compared to adjacent normal tissues. Furthermore, upregulated NNT-AS1 expression predicted poor prognosis and was an independent and significant risk factor for osteosarcoma patient survival. Further experiments revealed that NNT-AS1 knockdown significantly inhibited cell proliferation by inducing cell cycle arrest and promoting apoptosis in osteosarcoma cells. Moreover, NNT-AS1 silencing suppressed cell migration and invasion in vitro. In a tumor xenograft model, knockdown of NNT-AS1 suppressed tumor growth of OS-732 cells in vivo. Conclusions: Taken together, these findings indicate that NNT-AS1 functions as an oncogene in osteosarcoma and could be a novel diagnostic and therapeutic target for osteosarcoma.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769167 ◽  
Author(s):  
Yiting Zhang ◽  
Xinyue Zhu ◽  
Xiaomin Zhu ◽  
Yan Wu ◽  
Yajun Liu ◽  
...  

Retinoblastoma is a common intraocular malignancy that occurs during childhood. MicroRNAs play critical roles in the regulation of retinoblastoma initiation and progression, and aberrant expression of miR-613 had been reported in various types of cancer. However, the role and mechanism of its function in retinoblastoma are still unclear. In this study, we found that miR-613 was downregulated in retinoblastoma tissues and cell lines. Overexpression of miR-613 suppressed retinoblastoma cell proliferation, migration, and invasion and induced cell cycle arrest in vitro. Additionally, overexpressed miR-613 also inhibited tumor formation of retinoblastoma cells in vivo. We further identified E2F5 as a direct target of miR-613. Reintroduction of E2F5 without 3′-untranslated region reversed the inhibitory effects of miR-613 on cell proliferation and invasion. Our data collectively indicate that miR-613 functions as a tumor suppressor in retinoblastoma through downregulating E2F5, supporting the targeting of the novel miR-613/E2F5 axis as a potentially effective therapeutic approach for retinoblastoma.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii167-ii167
Author(s):  
Lili Sun ◽  
Ming Li

Abstract The four and a half LIM domain 1 (FHL1) has been considered as a tumor suppressor protein in multiple cancers. Here, we show that FHL1 plays a tumor-promoting role in glioblastoma, the most common and incurable brain cancer. Overexpression of FHL1 promotes the growth, migration, and invasion of GBM cells in vivo and in vitro. In contrast, FHL1 silencing exhibits the opposite effects. Mechanically, FHL1 upregulates EGFR expression and activates the downstream AKT / ERK1 / 2 / STAT3 signaling pathways. We further demonstrated that SP1 can also be induced by FHL1 expression, and FHL1 interacts with SP1 to upregulate EGFR expression at both mRNA and protein levels, leading to glioblastoma malignancy. Clinically, FHL1 is highly expressed in glioblastoma and shows positive correlation with EGFR and SP1 in GBM specimens. Our results suggest the key role of FHL1 in the expression of EGFR and highlight the translation potential of inhibiting FHL1 as a treatment for glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document