scholarly journals Wee1 Rather Than Plk1 Is Inhibited by AZD1775 at Therapeutically Relevant Concentrations

Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 819 ◽  
Author(s):  
Angela Flavia Serpico ◽  
Giuseppe D’Alterio ◽  
Cinzia Vetrei ◽  
Rosa Della Monica ◽  
Luca Nardella ◽  
...  

Wee1 kinase is an inhibitor of cyclin-dependent kinase (cdk)s, crucial cell cycle progression drivers. By phosphorylating cdk1 at tyrosine 15, Wee1 inhibits activation of cyclin B-cdk1 (Cdk1), preventing cells from entering mitosis with incompletely replicated or damaged DNA. Thus, inhibiting Wee1, alone or in combination with DNA damaging agents, can kill cancer cells by mitotic catastrophe, a tumor suppressive response that follows mitosis onset in the presence of under-replicated or damaged DNA. AZD1775, an orally available Wee1 inhibitor, has entered clinical trials for cancer treatment following this strategy, with promising results. Recently, however, AZD1775 has been shown to inhibit also the polo-like kinase homolog Plk1 in vitro, casting doubts on its mechanism of action. Here we asked whether, in the clinically relevant concentration range, AZD1775 inhibited Wee1 or Plk1 in transformed and non-transformed human cells. We found that in the clinically relevant, nanomolar, concentration range AZD1775 inhibited Wee1 rather than Plk1. In addition, AZD1775 treatment accelerated mitosis onset overriding the DNA replication checkpoint and hastened Plk1-dependent phosphorylation. On the contrary selective Plk1 inhibition exerted opposite effects. Thus, at therapeutic concentrations, AZD1775 inhibited Wee1 rather than Plk1. This information will help to better interpret results obtained by using AZD1775 both in the clinical and experimental settings and provide a stronger rationale for combination therapies.

Genome ◽  
2002 ◽  
Vol 45 (5) ◽  
pp. 881-889 ◽  
Author(s):  
Colleen M Radcliffe ◽  
Elizabeth A Silva ◽  
Shelagh D Campbell

In multi-cellular organisms, failure to properly regulate cell-cycle progression can result in inappropriate cell death or uncontrolled cell division leading to tumor formation. To guard against such events, conserved regulatory mechanisms called "checkpoints" block progression into mitosis in response to DNA damage and incomplete replication, as well as in response to other signals. Checkpoint mutants in organisms as diverse as yeast and humans are sensitive to various chemical agents that inhibit DNA replication or cause DNA damage. This phenomenon is the primary rationale for chemotherapy, which uses drugs that preferentially target tumor cells with compromised checkpoints. In this study, we demonstrate the use of Drosophila checkpoint mutants as a system for assaying the effects of various DNA-damaging and anti-cancer agents in a developing multicellular organism. Dwee1, grp and mei-41 are genes that encode kinases that function in the DNA replication checkpoint. We tested zygotic mutants of each gene for sensitivity to the DNA replication inhibitor hydroxyurea (HU), methyl methanosulfonate (MMS), ara-C, cisplatin, and the oxygen radical generating compound paraquat. The mutants show distinct differences in their sensitivity to each of the drugs tested, suggesting an underlying complexity in the responses of individual checkpoint genes to genotoxic stress.Key words: hydroxyurea (HU), ara-C, cisplatin, methyl methane sulfonate (MMS), paraquat.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1193-1200 ◽  
Author(s):  
Linsheng Zhang ◽  
Florence B. Fried ◽  
Hong Guo ◽  
Alan D. Friedman

Abstract RUNX1/AML1 regulates lineage-specific genes during hematopoiesis and stimulates G1 cell-cycle progression. Within RUNX1, S48, S303, and S424 fit the cyclin-dependent kinase (cdk) phosphorylation consensus, (S/T)PX(R/K). Phosphorylation of RUNX1 by cdks on serine 303 was shown to mediate destabilization of RUNX1 in G2/M. We now use an in vitro kinase assay, phosphopeptide-specific antiserum, and the cdk inhibitor roscovitine to demonstrate that S48 and S424 are also phosphorylated by cdk1 or cdk6 in hematopoietic cells. S48 phosphorylation of RUNX1 paralleled total RUNX1 levels during cell-cycle progression, S303 was more effectively phosphorylated in G2/M, and S424 in G1. Single, double, and triple mutation of the cdk sites to the partially phosphomimetic aspartic acid mildly reduced DNA affinity while progressively increasing transactivation of a model reporter. Mutation to alanine increased DNA affinity, suggesting that in other gene or cellular contexts phosphorylation of RUNX1 by cdks may reduce transactivation. The tripleD RUNX1 mutant rescued Ba/F3 cells from inhibition of proliferation by CBFβ-SMMHC more effectively than the tripleA mutant. Together these findings indicate that cdk phosphorylation of RUNX1 potentially couples stem/progenitor proliferation and lineage progression.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

AbstractColorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg0007
Author(s):  
Deniz Pirincci Ercan ◽  
Florine Chrétien ◽  
Probir Chakravarty ◽  
Helen R. Flynn ◽  
Ambrosius P. Snijders ◽  
...  

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae. All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.


2001 ◽  
Vol 114 (10) ◽  
pp. 1811-1820 ◽  
Author(s):  
M.E. Miller ◽  
F.R. Cross

Cyclin-dependent kinase (CDK) activity is essential for eukaryotic cell cycle events. Multiple cyclins activate CDKs in all eukaryotes, but it is unclear whether multiple cyclins are really required for cell cycle progression. It has been argued that cyclins may predominantly act as simple enzymatic activators of CDKs; in opposition to this idea, it has been argued that cyclins might target the activated CDK to particular substrates or inhibitors. Such targeting might occur through a combination of factors, including temporal expression, protein associations, and subcellular localization.


1995 ◽  
Vol 15 (1) ◽  
pp. 552-560 ◽  
Author(s):  
M Hattori ◽  
N Tsukamoto ◽  
M S Nur-e-Kamal ◽  
B Rubinfeld ◽  
K Iwai ◽  
...  

We have cloned a novel cDNA (Spa-1) which is little expressed in the quiescent state but induced in the interleukin 2-stimulated cycling state of an interleukin 2-responsive murine lymphoid cell line by differential hybridization. Spa-1 mRNA (3.5 kb) was induced in normal lymphocytes following various types of mitogenic stimulation. In normal organs it is preferentially expressed in both fetal and adult lymphohematopoietic tissues. A Spa-1-encoded protein of 68 kDa is localized mostly in the nucleus. Its N-terminal domain is highly homologous to a human Rap1 GTPase-activating protein (GAP), and a fusion protein of this domain (SpanN) indeed exhibited GAP activity for Rap1/Rsr1 but not for Ras or Rho in vitro. Unlike the human Rap1 GAP, however, SpanN also exhibited GAP activity for Ran, so far the only known Ras-related GTPase in the nucleus. In the presence of serum, stable Spa-1 cDNA transfectants of NIH 3T3 cells (NIH/Spa-1) hardly overexpressed Spa-1 (p68), and they grew as normally as did the parental cells. When NIH/Spa-1 cells were serum starved to be arrested in the G1/G0 phase of the cell cycle, however, they, unlike the control cells, exhibited progressive Spa-1 p68 accumulation, and following the addition of serum they showed cell death resembling mitotic catastrophes of the S phase during cell cycle progression. The results indicate that the novel nuclear protein Spa-1, with a potentially active Ran GAP domain, severely hampers the mitogen-induced cell cycle progression when abnormally and/or prematurely expressed. Functions of the Spa-1 protein and its regulation are discussed in the context of its possible interaction with the Ran/RCC-1 system, which is involved in the coordinated nuclear functions, including cell division.


1998 ◽  
Vol 18 (5) ◽  
pp. 2923-2931 ◽  
Author(s):  
Frederick R. Cross ◽  
Kristi Levine

ABSTRACT Many protein kinases are regulated by phosphorylation in the activation loop, which is required for enzymatic activity. Glutamic acid can substitute for phosphothreonine in some proteins activated by phosphorylation, but this substitution (T169E) at the site of activation loop phosphorylation in the Saccharomyces cerevisiae cyclin-dependent kinase (Cdk) Cdc28p blocks biological function and protein kinase activity. Using cycles of error-prone DNA amplification followed by selection for successively higher levels of function, we identified mutant versions of Cdc28p-T169E with high biological activity. The enzymatic and biological activity of the mutant Cdc28p was essentially normally regulated by cyclin, and the mutants supported normal cell cycle progression and regulation. Therefore, it is not a requirement for control of the yeast cell cycle that Cdc28p be cyclically phosphorylated and dephosphorylated. TheseCDC28 mutants allow viability in the absence of Cak1p, the essential kinase that phosphorylates Cdc28p-T169, demonstrating that T169 phosphorylation is the only essential function of Cak1p. Some growth defects remain in suppressed cak1 cdc28 strains carrying the mutant CDC28 genes, consistent with additional nonessential roles for CAK1.


2009 ◽  
Vol 187 (6) ◽  
pp. 773-780 ◽  
Author(s):  
Antonio Cerqueira ◽  
David Santamaría ◽  
Bárbara Martínez-Pastor ◽  
Miriam Cuadrado ◽  
Oscar Fernández-Capetillo ◽  
...  

In response to DNA damage, cells activate a phosphorylation-based signaling cascade known as the DNA damage response (DDR). One of the main outcomes of DDR activation is inhibition of cyclin-dependent kinase (Cdk) activity to restrain cell cycle progression until lesions are healed. Recent studies have revealed a reverse connection by which Cdk activity modulates processing of DNA break ends and DDR activation. However, the specific contribution of individual Cdks to this process remains poorly understood. To address this issue, we have examined the DDR in murine cells carrying a defined set of Cdks. Our results reveal that genome maintenance programs of postreplicative cells, including DDR, are regulated by the overall level of Cdk activity and not by specific Cdks.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3946-3946
Author(s):  
Liping Li ◽  
Katharina Hayer ◽  
Lingling Xian ◽  
Li Luo ◽  
Leslie Cope ◽  
...  

Introduction: Acute B-cell lymphoblastic leukemia (B-ALL) is the most common form of childhood leukemia and the leading cause of death in children with cancer. While therapy is often curative, about 10-15% of children will relapse with recurrent disease and abysmal outcomes. Actionable mechanisms that mediate relapse remain largely unknown. The gene encoding the High Mobility Group A1(HMGA1) chromatin regulator is overexpressed in diverse malignancies where high levels portend poor outcomes. In murine models, we discovered thatHmga1 overexpression is sufficient for clonal expansion and progression to aggressive acute lymphoid leukemia (Cancer Res 2008,68:10121, 2018,78:1890; Nature Comm 2017,8:15008). Further, HMGA1 is overexpressed in pediatric B-ALL (pB-ALL) blasts with highest levels in children who relapse early compared to those who achieve chronic remissions. Together, these findings suggest that HMGA1 is required for leukemogenesis and may foster relapse in B-ALL. We therefore sought to: 1) test the hypothesis that HMGA1 is a key epigenetic regulator required for leukemogenesis and relapse in pB-ALL, and, 2) elucidate targetable mechanisms mediated by HMGA1 in leukemogenesis. Methods: We silenced HMGA1 via lentiviral delivery of short hairpin RNAs targeting 2 different sequences in cell lines derived from relapsed pB-ALL (REH, 697). REH cells harbor the TEL-AML1 fusion; 697 cells express BCL2, BCL3, and cMYC. Next, we assessed leukemogenic phenotypes in vitro (proliferation, cell cycle progression, apoptosis, and clonogenicity) and leukemogenesis invivo. To dissect molecular mechanisms underlying HMGA1, we performed RNA-Seq and applied in silico pathway analysis. Results: There is abundant HMGA1 mRNA and protein in both pB-ALL cell lines and HMGA1 was effectively silenced by short hairpin RNA. Further, silencing HMGA1 dramatically halts proliferation in both cell lines, leading to a decrease in cells in S phase with a concurrent increase in G0/S1. Apoptosis also increased by 5-10% after HMGA1 silencing based on flow cytometry for Annexin V. In colony forming assays, silencing HMGA1 impaired clonogenicity in both pB-ALL cell lines. To assess HMGA1 function in leukemogenesis in vivo, we implanted control pB-ALL cells (transduced with control lentivirus) or those with HMGA1 silencing via tail vein injection into immunosuppressed mice (NOD/SCID/IL2 receptor γ). All mice receiving control REH cells succumbed to leukemia with a median survival of only 29 days. At the time of death, mice had marked splenomegaly along with leukemic cells circulating in the peripheral blood and infiltrating both the spleen and bone marrow. In contrast, mice injected with REH cells with HMGA1 silencing survived for >40 days (P<0.001) and had a significant decrease in tumor burden in the peripheral blood, spleen, and bone marrow. Similar results were obtained with 697 cells, although this model was more fulminant with control mice surviving for a median of only 17 days. To determine whether the leukemic blasts found in mice injected with ALL cells after HMGA1 silencing represented a clone that expanded because it escaped HMGA1 silencing, we assessed HMGA1 levels and found that cells capable of establishing leukemia had high HMGA1 expression, with levels similar to those observed in control cells without HMGA1 silencing. RNA-Seq analyses from REH and 697 cell lines with and without HMGA1 silencing revealed that HMGA1 up-regulates transcriptional networks involved in RAS/MAPK/ERK signaling while repressing the IDH1 metabolic gene, the latter of which functions in DNA and histone methylation. Studies are currently underway to identify effective agents to target HMGA1 pathways. Conclusions: Silencing HMGA1 dramatically disrupts leukemogenic phenotypes in vitro and prevents the development of leukemia in mice. Mechanistically, RNA-Seq analyses revealed that HMGA amplifies transcriptional networks involved cell cycle progression and epigenetic modifications. Our findings highlight the critical role for HMGA1 as a molecular switch required for leukemic transformation in pB-ALL and a rational therapeutic target that may be particularly relevant for relapsed B-ALL. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document