scholarly journals TRAIL Induces Nuclear Translocation and Chromatin Localization of TRAIL Death Receptors

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1167 ◽  
Author(s):  
Ufuk Mert ◽  
Alshaimaa Adawy ◽  
Elisabeth Scharff ◽  
Pierre Teichmann ◽  
Anna Willms ◽  
...  

Binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to the plasma membrane TRAIL-R1/-R2 selectively kills tumor cells. This discovery led to evaluation of TRAIL-R1/-R2 as targets for anti-cancer therapy, yet the corresponding clinical trials were disappointing. Meanwhile, it emerged that many cancer cells are TRAIL-resistant and that TRAIL-R1/-R2-triggering may lead to tumor-promoting effects. Intriguingly, recent studies uncovered specific functions of long ignored intracellular TRAIL-R1/-R2, with tumor-promoting functions of nuclear (n)TRAIL-R2 as the regulator of let-7-maturation. As nuclear trafficking of TRAIL-Rs is not well understood, we addressed this issue in our present study. Cell surface biotinylation and tracking of biotinylated proteins in intracellular compartments revealed that nTRAIL-Rs originate from the plasma membrane. Nuclear TRAIL-Rs-trafficking is a fast process, requiring clathrin-dependent endocytosis and it is TRAIL-dependent. Immunoprecipitation and immunofluorescence approaches revealed an interaction of nTRAIL-R2 with the nucleo-cytoplasmic shuttle protein Exportin-1/CRM-1. Mutation of a putative nuclear export sequence (NES) in TRAIL-R2 or the inhibition of CRM-1 by Leptomycin-B resulted in the nuclear accumulation of TRAIL-R2. In addition, TRAIL-R1 and TRAIL-R2 constitutively localize to chromatin, which is strongly enhanced by TRAIL-treatment. Our data highlight the novel role for surface-activated TRAIL-Rs by direct trafficking and signaling into the nucleus, a previously unknown signaling principle for cell surface receptors that belong to the TNF-superfamily.

2010 ◽  
pp. 169-176
Author(s):  
R. Andres Floto

This section outlines the general principles of intracellular signalling. Focusing on cell surface receptors, the requirements for effective transmission of information across the plasma membrane are outlined. The principal mechanisms utilized in mammalian signal transduction are described. For each, the pathological consequences of aberrant signalling and means by which pathways can be pharmacologically targeted are described in molecular terms....


2020 ◽  
pp. 256-265
Author(s):  
R. Andres Floto

This chapter outlines the general principles of intracellular signalling. Focusing on cell surface receptors, the requirements for effective transmission of information across the plasma membrane are outlined. The principal mechanisms utilized in mammalian signal transduction are described. For each, the pathological consequences of aberrant signalling and means by which pathways can be pharmacologically targeted are described in molecular terms. Intracellular signalling pathways permit the transmission and integration of information within cells. Mammalian receptor signalling relies on only a small number of distinct molecular processes which interact to determine cellular responses. Rapid advances in our knowledge of the mechanisms of intracellular signalling has greatly increased understanding of how cells function physiologically, how they malfunction pathologically, and how their behaviour might be manipulated therapeutically.


2019 ◽  
Vol 20 (6) ◽  
pp. 1363 ◽  
Author(s):  
Alessandro Magini ◽  
Alice Polchi ◽  
Danila Di Meo ◽  
Sandra Buratta ◽  
Elisabetta Chiaradia ◽  
...  

The monocarbonyl analogue of curcumin (1E,4E)-1,5-Bis(2-methoxyphenyl)penta-1,4-dien-3-one (C1) has been used as a specific activator of the master gene transcription factor EB (TFEB) to correlate the activation of this nuclear factor with the increased activity of lysosomal glycohydrolases and their recruitment to the cell surface. The presence of active lysosomal glycohydrolases associated with the lipid microdomains has been extensively demonstrated, and their role in glycosphingolipid (GSL) remodeling in both physiological and pathological conditions, such as neurodegenerative disorders, has been suggested. Here, we demonstrate that Jurkat cell stimulation elicits TFEB nuclear translocation and an increase of both the expression of hexosaminidase subunit beta (HEXB), hexosaminidase subunit alpha (HEXA), and galactosidase beta 1 (GLB1) genes, and the recruitment of β-hexosaminidase (Hex, EC 3.2.1.52) and β-galactosidase (Gal, EC 3.2.1.23) on lipid microdomains. Treatment of Jurkat cells with the curcumin analogue C1 also resulted in an increase of both lysosomal glycohydrolase activity and their targeting to the cell surface. Similar effects of C1 on lysosomal glycohydrolase expression and their recruitment to lipid microdomains was observed by treating the SH-SY5Y neuroblastoma cell line; the effects of C1 treatment were abolished by TFEB silencing. Together, these results clearly demonstrate the existence of a direct link between TFEB nuclear translocation and the transport of Hex and Gal from lysosomes to the plasma membrane.


1981 ◽  
Vol 1 (2) ◽  
pp. 128-135 ◽  
Author(s):  
P L Williamson ◽  
W A Massey ◽  
B M Phelps ◽  
R A Schlegel

Transformed murine hematopoietic cells of several lineages bound the fluorescent membrane probe merocyanine 540, whereas their normal counterparts did not. Similar selective binding was reproduced in artificial liposomes which bound this probe above their phase transition temperature, but not below it. The regions of the membrane to which merocyanine 540 binds along with the receptors for the lectin concanavalin A, but not the receptors for the lectin wheat germ agglutinin, were rearranged during the course of induced differentiation of erythroleukemia cells. Based on these findings, we propose a model of hematopoietic cell surface differentiation in which proteins such as concanavalin A receptors, which are destined for removal from the plasma membrane, are specifically associated with disordered, liquid-like lipid domains which can be visualized with merocyanine 540. For the specific case of erythroid differentiation, these domains and their associated proteins are collected at the region of the membrane where nuclear extrusion occurs and are eliminated from the reticulocyte plasma membrane by the enucleation event.


2003 ◽  
Vol 17 (4) ◽  
pp. 628-642 ◽  
Author(s):  
Ming Qiu ◽  
Abby Olsen ◽  
Emily Faivre ◽  
Kathryn B. Horwitz ◽  
Carol A. Lange

Abstract Breast cancers often have increased MAPK activity; this pathway may drive breast cancer cell growth by targeting steroid hormone receptors. MAPK phosphorylates human progesterone receptors (PRs) on Ser294, thus regulating several aspects of PR activity. To study the role of PR Ser294 phosphorylation on subcellular distribution, we stably expressed wild-type (wt) or S294A (Ser294 to Ala) PR-B in several cell types. PRs phosphorylated on Ser294 were nuclear. Activation of MAPK induced Ser294 phosphorylation and rapid nuclear translocation of wt, but not S294A, PR-B; both receptors concentrated in the nucleus after progestin treatment. The MAPK kinase inhibitor, U0126, blocked epidermal growth factor but not progestin-induced Ser294 phosphorylation and translocation of wt PR, indicating a novel mechanism for nuclear localization. After progestin treatment, wt PR-B underwent ligand-dependent down-regulation, while S294A PR-B persisted in nuclei. Prolonged treatment with U0126 or the nuclear export inhibitor, leptomycin B, promoted nuclear accumulation of wt PR-B and blocked ligand-dependent PR down-regulation, suggesting that PR degradation occurs in the cytoplasm and requires MAPK-dependent nuclear export. Stabilization of PRs by leptomycin B also blocked PR transcriptional activity, indicating a link between nucleocytoplasmic shuttling, receptor stability, and function. These results support a regulatory role for MAPK in nuclear steroid hormone receptor subcellular localization and coupling to multiple PR functions.


2009 ◽  
Vol 418 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Audrey Parent ◽  
Emilie Hamelin ◽  
Pascale Germain ◽  
Jean-Luc Parent

The β2ARs (β2-adrenergic receptors) undergo ligand-induced internalization into early endosomes, but then are rapidly and efficiently recycled back to the plasma membrane, restoring the numbers of functional cell-surface receptors. Gathering evidence suggests that, during prolonged exposure to agonist, some β2ARs also utilize a slow recycling pathway through the perinuclear recycling endosomal compartment regulated by the small GTPase Rab11. In the present study, we demonstrate by co-immunoprecipitation studies that there is a β2AR–Rab11 association in HEK-293 cells (human embryonic kidney cells). We show using purified His6-tagged Rab11 protein and β2AR intracellular domains fused to GST (glutathione transferase) that Rab11 interacts directly with the C-terminal tail of β2AR, but not with the other intracellular domains of the receptor. Pull-down and immunoprecipitation assays revealed that the β2AR interacts preferentially with the GDP-bound form of Rab11. Arg333 and Lys348 in the C-terminal tail of the β2AR were identified as crucial determinants for Rab11 binding. A β2AR construct with these two residues mutated to alanine, β2AR RK/AA (R333A/K348A), was generated. Analysis of cell-surface receptors by ELISA revealed that the recycling of β2AR RK/AA was drastically reduced when compared with wild-type β2AR after agonist washout, following prolonged receptor stimulation. Confocal microscopy demonstrated that the β2AR RK/AA mutant failed to co-localize with Rab11 and recycle to the plasma membrane, in contrast with the wild-type receptor. To our knowledge, the present study is the first report of a direct interaction between the β2AR and a Rab GTPase, which is required for the accurate intracellular trafficking of the receptor.


2014 ◽  
Vol 95 (8) ◽  
pp. 1723-1733 ◽  
Author(s):  
Gavan Holloway ◽  
Vi T. Dang ◽  
David A. Jans ◽  
Barbara S. Coulson

The importance of innate immunity to rotaviruses is exemplified by the range of strategies evolved by rotaviruses to interfere with the IFN response. We showed previously that rotaviruses block gene expression induced by type I and II IFNs, through a mechanism allowing activation of signal transducer and activator of transcription (STAT) 1 and STAT2 but preventing their nuclear accumulation. This normally occurs through activated STAT1/2 dimerization, enabling an interaction with importin α5 that mediates transport into the nucleus. In rotavirus-infected cells, STAT1/2 inhibition may limit the antiviral actions of IFN produced early in infection. Here we further analysed the block to STAT1/2 nuclear accumulation, showing that activated STAT1 accumulates in the cytoplasm in rotavirus-infected cells. STAT1/2 nuclear accumulation was inhibited by rotavirus even in the presence of the nuclear export inhibitor Leptomycin B, demonstrating that enhanced nuclear export is not involved in STAT1/2 cytoplasmic retention. The ability to inhibit STAT nuclear translocation was completely conserved amongst the group A rotaviruses tested, including a divergent avian strain. Analysis of mutant rotaviruses indicated that residues after amino acid 47 of NSP1 are dispensable for STAT inhibition. Furthermore, expression of any of the 12 Rhesus monkey rotavirus proteins did not inhibit IFN-stimulated STAT1 nuclear translocation. Finally, co-immunoprecipitation experiments from transfected epithelial cells showed that STAT1/2 binds importin α5 normally following rotavirus infection. These findings demonstrate that rotavirus probably employs a novel strategy to inhibit IFN-induced STAT signalling, which acts after STAT activation and binding to the nuclear import machinery.


2020 ◽  
Vol 477 (12) ◽  
pp. 2327-2345 ◽  
Author(s):  
Alessandra Casamento ◽  
Emmanuel Boucrot

Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document