scholarly journals Immunotherapy for Multiple Myeloma

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2009 ◽  
Author(s):  
Hideto Tamura ◽  
Mariko Ishibashi ◽  
Mika Sunakawa ◽  
Koiti Inokuchi

Despite therapeutic advances over the past decades, multiple myeloma (MM) remains a largely incurable disease with poor prognosis in high-risk patients, and thus new treatment strategies are needed to achieve treatment breakthroughs. MM represents various forms of impaired immune surveillance characterized by not only disrupted antibody production but also immune dysfunction of T, natural killer cells, and dendritic cells, although immunotherapeutic interventions such as allogeneic stem-cell transplantation and dendritic cell-based tumor vaccines were reported to prolong survival in limited populations of MM patients. Recently, epoch-making immunotherapies, i.e., immunomodulatory drug-intensified monoclonal antibodies, such as daratumumab combined with lenalidomide and chimeric antigen receptor T-cell therapy targeting B-cell maturation antigen, have been developed, and was shown to improve prognosis even in advanced-stage MM patients. Clinical trials using other antibody-based treatments, such as antibody drug-conjugate and bispecific antigen-directed CD3 T-cell engager targeting, are ongoing. The manipulation of anergic T-cells by checkpoint inhibitors, including an anti-T-cell immunoglobulin and ITIM domains (TIGIT) antibody, also has the potential to prolong survival times. Those new treatments or their combination will improve prognosis and possibly point toward a cure for MM.

Author(s):  
Pierre-Yves Dietrich ◽  
Valérie Dutoit ◽  
Paul R. Walker

There is now evidence that the rules established for tumor immunology and immunotherapy in general are relevant for brain tumors. Treatment strategies explored have mainly involved vaccines using either tumor cells or components, and vaccines with defined synthetic peptides. This latter approach offers the advantage to select well-characterized antigens with selective or preferential expression on glioma. This is a prerequisite because collateral damage to the brain is not allowed. A second strategy which is reaching clinical trials is T cell therapy using the patients' own lymphocytes engineered to become tumor reactive. Tumor specificity can be conferred by forced expression of either a high-avidity T cell receptor or an antitumor antibody (the latter cells are called chimeric antigen receptors). An advantage of T cell engineering is the possibility to modify the cells to augment cellular activation, in vivo persistence and resistance to the tumor immunosuppressive milieu. A direct targeting of the hostile glioma microenvironment will additionally be required for achieving potent immunotherapy and various trials are assessing this issue. Finally, combining immunotherapy with immune checkpoint inhibitors and chemotherapy must be explored within rigorous clinical trials that favor constant interactions between the bench and bedside. Regarding immunotherapy for glioma patients, what was an unrealistic dream a decade ago is today a credible prospect.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2187
Author(s):  
Shobi Venkatachalam ◽  
Taylor R. McFarland ◽  
Neeraj Agarwal ◽  
Umang Swami

Metastatic prostate cancer is a lethal disease with limited treatment options. Immune checkpoint inhibitors have dramatically changed the treatment landscape of multiple cancer types but have met with limited success in prostate cancer. In this review, we discuss the preclinical studies providing the rationale for the use of immunotherapy in prostate cancer and underlying biological barriers inhibiting their activity. We discuss the predictors of response to immunotherapy in prostate cancer. We summarize studies evaluating immune checkpoint inhibitors either as a single agent or in combination with other checkpoint inhibitors or with other agents such as inhibitors of androgen axis, poly ADP-ribose polymerase (PARP), radium-223, radiotherapy, cryotherapy, tumor vaccines, chemotherapy, tyrosine kinase inhibitors, and granulocyte-macrophage colony-stimulating factor. We thereafter review future directions including the combination of immune checkpoint blockade with inhibitors of adenosine axis, bispecific T cell engagers, PSMA directed therapies, adoptive T-cell therapy, and multiple other miscellaneous agents.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A150-A150
Author(s):  
Christina Yu ◽  
Brian Walker ◽  
G David Roodman ◽  
Kun Huang ◽  
Michel Sadelain ◽  
...  

BackgroundMultiple Myeloma (MM) is an incurable disease, with a particularly poor prognosis for patients with refractory/relapsed MM or high-risk cytogenetics. Chimeric Antigen Receptor (CAR) T-cell therapy targeting BCMA can induce deep responses in highly pretreated RRMM; however, remissions are not sustained, and the majority of patients eventually relapse. We hypothesized that genomic determinants of MM play a role in dictating the expression of surface targets that can be of use for immune targeting.MethodsWe analyzed the gene expression of 24 immunotherapeutic targets in a combined dataset of 1900 MM patients from three independent expression datasets obtained from the Multiple Myeloma Research Foundation CoMMpass study and Gene Expression Omnibus. Given that CAR T-cell therapy may be especially important for patients with high-risk myeloma, we defined the expression of each target in high-risk MM patients by stratifying patients based on several genomic features impacting prognosis. Additionally, we conducted a gene co-expression network analysis and identified 30 gene modules highly correlated with 16 cell surface targets from our panel, further suggesting that genetic determinants of MM may shape a targetable cell surfaceome. In order to determine whether targeting any of these candidate antigens might cause major toxicity to normal cells, we utilized several repositories providing protein data1 to annotate their expression in several normal cell types.ResultsWe determined that a number of genomic factors could stratify the 24 targets into three general groups: 1) targets that show consistent overexpression in high-risk patients: IGF1R, ITGB7, GPRC5D and CD70, and are thus suitable for most high-risk patients; 2) targets that are down-regulated in patients with high-risk genomic features: CD200, CD19, CD40, CD1D and IGKC, perhaps playing a role in cancer immune escape; and 3) targets associated with one specific genetic abnormality, i.e. t(4;14): FUT3, SLAMF7, CD56, CD138 and BCMA, thus of use for precision CAR therapy in this high-risk patient subset.ConclusionsOur work provides a means of target selection for precision CAR therapy, by considering both patient genomic backgrounds and cancer cell surface profiles. Furthermore, our results provide a roadmap for immunotherapy of MM by unbiasedly comparing the expression of top MM cell surface targets in patient data and normal cells and suggest that the genetic landscape of MM may predict the expression of specific targets for precision immunotherapy. The quest for novel MM targets for immunotherapies remains open, and CAR target discovery driven by specific genetic events remains an active area of investigation.ReferencePerna F, Berman SH, Soni RK, et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 2017;32(4):506–19.


2013 ◽  
Vol 19 (8) ◽  
pp. 2048-2060 ◽  
Author(s):  
Robert O. Carpenter ◽  
Moses O. Evbuomwan ◽  
Stefania Pittaluga ◽  
Jeremy J. Rose ◽  
Mark Raffeld ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A270-A270
Author(s):  
Chen Zhao ◽  
Abigail Wong-Rolle ◽  
Prajan Divakar ◽  
Katherine Calvo ◽  
Christopher Hourigan

BackgroundRelapsed or refractory Acute Myeloid Leukemia (R-AML) is a deadly disease with an inadequate response rate to current treatments. Recent advances in immunotherapy shed light on R-AML, and several clinical trials have shown promising potential for combining immune checkpoint inhibitors (ICIs) with hypomethylating agents. A deeper understanding of the tumor-immune microenvironment in R-AML during combination ICI treatment is urgently needed for developing better therapeutics and stratifying treatment strategies.MethodsTo dissect the tumor-immune interactions in the bone marrow microenvironment, we employed nanoString GeoMx Digital Spatial Profiler (DSP) and performed a spatial-transcriptomic analysis of patients with R-AML who received pembrolizumab and decitabine. We compared the transcriptomic profiles and TCR clonalities of tumor-interacting T cells, bystander T cells, and other cells at baseline, post-pembrolizumab treatment, and post-decitabine, which enable us to identify R-AML’s suppressive immune microenvironment and immune cells’ responses to ICI and hypomethylating agent.ResultsWe obtained the spatial-transcriptomic profiles of T cells, stromal cells, and leukemia cells in patients with R-AML at different treatment points. Our TCR-specific probes were able to track T cell clonal changes during treatments.ConclusionsR-AML harbored a complex tumor immune microenvironment and diverse T cell clonality.AcknowledgementsThis research was supported in part by the Intramural Research Program of the NCI (the Center for Cancer Research), NHLBI, and NIH Clinical Center.Ethics ApprovalThis study is approved by NHLBI IRB.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. TPS1102-TPS1102
Author(s):  
Ana Christina Garrido-Castro ◽  
Tanya Elizabeth Keenan ◽  
Tianyu Li ◽  
Paulina Lange ◽  
Catherine Callahan ◽  
...  

TPS1102 Background: Immune checkpoint inhibitors (ICIs) have not yet benefited most patients with MBC. In HR+ MBC, the first randomized trial combining an ICI with chemotherapy demonstrated no clinical benefit with the addition of pembrolizumab to eribulin.1 The optimal ICI combination agent to overcome primary resistance in HR+ MBC is unknown. One promising agent is the anti-Trop-2-SN-38 antibody drug conjugate (ADC) SG, which led to median progression-free survival (PFS) of 5.5 months in HR+ MBC refractory to endocrine therapy.2 This ADC may boost anticancer immunity by binding immune cell receptors to promote antibody-dependent cellular cytotoxicity.3 In addition, the SN-38 payload of SG is the active metabolite of irinotecan, which depletes regulatory T cells, upregulates MHC class I and PD-L1 expression, and augments the antitumor activity of anti-PD-1/L1 antibodies in murine tumor models.4 The irinotecan analogue camptothecin also enhances CD8+ cytotoxic T cell effector functions and antitumor immune responses by inhibiting NR4A transcription factors,5 which have recently been shown to play a central role in inducing the T cell dysfunction associated with chronic antigen stimulation in solid tumors. Methods: This is a multi-center 1:1 randomized phase II trial to investigate whether the addition of pembrolizumab (200 mg IV every 3 weeks) to SG (10 mg/kg IV days 1+8 every 21 days) improves PFS compared to SG alone in HR+ HER2- MBC that is PD-L1+ by central assessment with 22C3 combined positive score (CPS) ≥ 1 (NCT04448886). Key eligibility criteria include at least 1 prior hormonal therapy and no more than 1 prior chemotherapy for HR+ MBC. Eligible patients must have evaluable disease, and previously treated brain metastases are permitted. Exclusion criteria include prior treatment with SG, irinotecan, and PD-1/L1 inhibitors. Based on a sample size of 110 patients, the trial has 80% power to detect a 3-month difference in median PFS from 5.5 months in the SG-alone cohort to 8.5 months in the SG + pembrolizumab cohort with a one-sided alpha of 0.1. Participants undergo mandatory baseline and on-treatment research biopsies if their disease is safely accessible. Tumor biopsies will be evaluated for Trop-2, immune cells, inhibitory checkpoints, transcriptomic signatures, and genomic alterations. Stool specimens will be submitted for microbiome analyses, and health-related quality of life will be assessed. The trial is currently open and enrolling patients. References: 1) Tolaney SM et al. JAMA Oncol 6, 1598-1605 (2020). 2) Kalinksy K et al. Ann Oncol 12, 1709-1718 (2020). 3) Cardillo TM et al. Bioconjug Chem 26, 919-931 (2015). 4) Iwai T et al. Oncotarget 9, 31411-31421 (2018). 5) Hibino S et al. Cancer Res 78, 3027-3040 (2018). Clinical trial information: NCT04448886 .


Sign in / Sign up

Export Citation Format

Share Document