scholarly journals The Activity of KIF14, Mieap, and EZR in a New Type of the Invasive Component, Torpedo-Like Structures, Predetermines the Metastatic Potential of Breast Cancer

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1909
Author(s):  
Tatiana S. Gerashchenko ◽  
Sofia Y. Zolotaryova ◽  
Artem M. Kiselev ◽  
Liubov A. Tashireva ◽  
Nikita M. Novikov ◽  
...  

Intratumor morphological heterogeneity reflects patterns of invasive growth and is an indicator of the metastatic potential of breast cancer. In this study, we used this heterogeneity to identify molecules associated with breast cancer invasion and metastasis. The gene expression microarray data were used to identify genes differentially expressed between solid, trabecular, and other morphological arrangements of tumor cells. Immunohistochemistry was applied to evaluate the association of the selected proteins with metastasis. RNA-sequencing was performed to analyze the molecular makeup of metastatic tumor cells. High frequency of metastases and decreased metastasis-free survival were detected in patients either with positive expression of KIF14 or Mieap or negative expression of EZR at the tips of the torpedo-like structures in breast cancers. KIF14- and Mieap-positive and EZR-negative cells were mainly detected in the torpedo-like structures of the same breast tumors; however, their transcriptomic features differed. KIF14-positive cells showed a significant upregulation of genes involved in ether lipid metabolism. Mieap-positive cells were enriched in genes involved in mitophagy. EZR-negative cells displayed upregulated genes associated with phagocytosis and the chemokine-mediated signaling pathway. In conclusion, the positive expression of KIF14 and Mieap and negative expression of EZR at the tips of the torpedo-like structures are associated with breast cancer metastasis.

2018 ◽  
Vol 11 (3) ◽  
pp. 660-664
Author(s):  
Shino Ishihara-Yusa ◽  
Taku Fujimura ◽  
Chunbing Lyu ◽  
Masayuki Sugawara ◽  
Kazuhiro Sakamoto ◽  
...  

Pigmented breast cancer in the skin caused by nonneoplastic melanocytes of epidermal origin is a rare condition of metastasis from breast cancer, but the pathogenesis of this phenomenon is almost unknown. In this report, we describe a case of breast cancer metastasis in the skin with prominent hyperkeratotic pigmentation caused by nonneoplastic melanocyte colonization. Immunohistochemical staining revealed that the metastatic tumor cells produced IL-23, which is reported not only to induce IL-17 but also to inhibit cell apoptosis in breast cancer cells, which affects tumor progression. In addition to IL-23, substantial numbers of IL-17-producing cells were detected at the peritumoral area, suggesting that IL-17 might induce not only melanogenesis but also keratinocyte proliferation and tumorigenesis. Our report suggests possible mechanisms of hyperkeratotic pigmentation of breast cancer metastasis in the skin.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kevin Roarty ◽  
Gloria V. Echeverria

While numerous therapies are highly efficacious in early-stage breast cancers and in particular subsets of breast cancers, therapeutic resistance and metastasis unfortunately arise in many patients. In many cases, tumors that are resistant to standard of care therapies, as well as tumors that have metastasized, are treatable but incurable with existing clinical strategies. Both therapy resistance and metastasis are multi-step processes during which tumor cells must overcome diverse environmental and selective hurdles. Mechanisms by which tumor cells achieve this are numerous and include acquisition of invasive and migratory capabilities, cell-intrinsic genetic and/or epigenetic adaptations, clonal selection, immune evasion, interactions with stromal cells, entering a state of dormancy or senescence, and maintaining self-renewal capacity. To overcome therapy resistance and metastasis in breast cancer, the ability to effectively model each of these mechanisms in the laboratory is essential. Herein we review historic and the current state-of-the-art laboratory model systems and experimental approaches used to investigate breast cancer metastasis and resistance to standard of care therapeutics. While each model system has inherent limitations, they have provided invaluable insights, many of which have translated into regimens undergoing clinical evaluation. We will discuss the limitations and advantages of a variety of model systems that have been used to investigate breast cancer metastasis and therapy resistance and outline potential strategies to improve experimental modeling to further our knowledge of these processes, which will be crucial for the continued development of effective breast cancer treatments.


2020 ◽  
Author(s):  
Meiling Zhang ◽  
Zongzhi Z. Liu ◽  
Keisuke Aoshima ◽  
Yangyi Zhang ◽  
Yongyan An ◽  
...  

AbstractEpigenetic and transcriptional changes are critical for metastasis, the major cause of cancer-related deaths. Metastatic tumor cells escape immune surveillance more efficiently than tumor cells in the primary sites, but the mechanisms controlling their immune evasion are poorly understood. We found that distal metastases are more immune inert with increased M2 macrophages compared to their matched primary tumors. Acetyl-lysine reader CECR2 is an epigenetic regulator upregulated in metastases and positively associated with M2 macrophages. CECR2 specifically promotes breast cancer metastasis in multiple mouse models, with more profound effect in the immunocompetent setting. Mechanistically, NF-κB family member RELA recruits CECR2 to activate CSF1 and CXCL1, which are critical for macrophage-mediated immunosuppression at the metastatic sites. Furthermore, pharmacological inhibition of CECR2 bromodomain impedes NF-κB-mediated immune suppression by macrophages and inhibits breast cancer metastasis. These results reveal novel therapeutic strategies to treat metastatic breast cancer.Statement of SignificanceComparison of matched primary breast tumors and distal metastases show that metastases are more immune inert with increased tumor promoting macrophages. Depletion or pharmacological inhibition of CECR2 inhibits breast cancer metastasis by suppressing macrophage inflammatory responses, nominating CECR2 as a promising therapeutic target for cancer metastasis.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Tetsu Hayashida ◽  
Hiromitsu Jinno ◽  
Yuko Kitagawa ◽  
Masaki Kitajima

Epithelial-mesenchymal transition (EMT) is a multistep process in which cells acquire molecular alterations such as loss of cell-cell junctions and restructuring of the cytoskeleton. There is an increasing understanding that this process may promote breast cancer progression through promotion of invasive and metastatic tumor growth. Recent observations imply that there may be a cross-talk between EMT and cancer stem cell properties, leading to enhanced tumorigenicity and the capacity to generate heterogeneous tumor cell populations. Here, we review the experimental and clinical evidence for the involvement of EMT in cancer stem cell theory, focusing on the common characteristics of this phenomenon.


2020 ◽  
Vol 48 (2-3) ◽  
pp. 116-118
Author(s):  
Damir Danolić ◽  
◽  
Luka Marcelić ◽  
Ilija Alvir ◽  
Ivica Mamić ◽  
...  

Metastases to the female genital tract from extra-genital primary cancers are uncommon and usually occur during widespread metastatic disease. Breast cancers are the most frequent primaries, predominantly the lobular type. Here, we report a case of a 55-year-old woman with breast cancer endometrial metastasis who presented with postmenopausal vaginal bleeding. We highlight the importance of endometrial sampling to confirm the diagnosis and distinguish primary from metastatic cancer of the endometrium since the treatment and prognosis of these conditions are entirely different.


2020 ◽  
Vol 21 (5) ◽  
pp. 1671 ◽  
Author(s):  
Anna Fabisiewicz ◽  
Malgorzata Szostakowska-Rodzos ◽  
Anna J. Zaczek ◽  
Ewa A. Grzybowska

Breast cancer metastasis is the leading cause of cancer deaths in women and is difficult to combat due to the long periods in which disseminated cells retain a potential to be re-activated and start the relapse. Assessing the number and molecular profile of circulating tumor cells (CTCs) in breast cancer patients, especially in early breast cancer, should help in identifying the possibility of relapse in time for therapeutic intervention to prevent or delay recurrence. While metastatic breast cancer is considered incurable, molecular analysis of CTCs still have a potential to define particular susceptibilities of the cells representing the current tumor burden, which may differ considerably from the cells of the primary tumor, and offer more tailored therapy to the patients. In this review we inspect the routes to metastasis and how they can be linked to specific features of CTCs, how CTC analysis may be used in therapy, and what is the current status of the research and efforts to include CTC analysis in clinical practice.


2007 ◽  
Vol 13 (14) ◽  
pp. 4105-4110 ◽  
Author(s):  
Taku Nakagawa ◽  
Steve R. Martinez ◽  
Yasufumi Goto ◽  
Kazuo Koyanagi ◽  
Minoru Kitago ◽  
...  

2011 ◽  
Vol 10 ◽  
pp. CIN.S6631 ◽  
Author(s):  
Alan A. Dombkowski ◽  
Zakia Sultana ◽  
Douglas B. Craig ◽  
Hasan Jamil

Aberrant microRNA activity has been reported in many diseases, and studies often find numerous microRNAs concurrently dysregulated. Most target genes have binding sites for multiple microRNAs, and mounting evidence indicates that it is important to consider their combinatorial effect on target gene repression. A recent study associated the coincident loss of expression of six microRNAs with metastatic potential in breast cancer. Here, we used a new computational method, miR-AT!, to investigate combinatorial activity among this group of microRNAs. We found that the set of transcripts having multiple target sites for these microRNAs was significantly enriched with genes involved in cellular processes commonly perturbed in metastatic tumors: cell cycle regulation, cytoskeleton organization, and cell adhesion. Network analysis revealed numerous target genes upstream of cyclin D1 and c-Myc, indicating that the collective loss of the six microRNAs may have a focal effect on these two key regulatory nodes. A number of genes previously implicated in cancer metastasis are among the predicted combinatorial targets, including TGFB1, ARPC3, and RANKL. In summary, our analysis reveals extensive combinatorial interactions that have notable implications for their potential role in breast cancer metastasis and in therapeutic development.


2004 ◽  
Vol 24 (22) ◽  
pp. 9726-9735 ◽  
Author(s):  
Julie A. Nagle ◽  
Zhefu Ma ◽  
Maura A. Byrne ◽  
Morris F. White ◽  
Leslie M. Shaw

ABSTRACT The insulin receptor substrate (IRS) proteins are adaptor molecules that integrate signals generated by receptors that are implicated in human breast cancer. We investigated the specific contribution of IRS-2 to mammary tumor progression using transgenic mice that express the polyoma virus middle T antigen (PyV-MT) in the mammary gland and IRS-2-null (IRS-2−/−) mice. PyV-MT-induced tumor initiation and growth were similar in wild-type (WT) and IRS-2−/− mice. However, the latency and incidence of metastasis were significantly decreased in the absence of IRS-2 expression. The contribution of IRS-2 to metastasis is intrinsic to the tumor cells, because IRS-2−/− mammary tumor cells did not metastasize when grown orthotopically in the mammary fat pads of WT mice. WT and IRS-2−/− tumors contained similar numbers of mitotic cells, but IRS-2−/− tumors had a higher incidence of apoptosis than did WT tumors. In vitro, IRS-2−/− mammary tumor cells were less invasive and more apoptotic in response to growth factor deprivation than their WT counterparts. In contrast, IRS-1−/− tumor cells, which express only IRS-2, were highly invasive and were resistant to apoptotic stimuli. Collectively, our findings reveal an important contribution of IRS-2 to breast cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document