scholarly journals Targeting STAT3 and STAT5 in Cancer

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2002 ◽  
Author(s):  
Elvin D. de Araujo ◽  
György M. Keserű ◽  
Patrick T. Gunning ◽  
Richard Moriggl

Insights into the mutational landscape of the human cancer genome coding regions defined about 140 distinct cancer driver genes in 2013, which approximately doubled to 300 in 2018 following advances in systems cancer biology studies [...]

2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii4-ii4
Author(s):  
Hiroyuki Aburatani

Abstract Over the last two decades, genomic technology such as microarray and next generation sequencing (NGS) enabled comprehensive analysis of cancer genome. International cancer genome consortium, established in 2007, completed the analysis of 25,000 cases and has brought discovery of novel cancer driver genes and improved our understanding cancer biology. For example, discovery of IDH1/2 mutation in various cancers created a new concept, 2-hydroxyglutarate as Oncometabolite. The mutational signature patterns allow us to predict how the individual cancer was developed. Anti-cancer drugs, such as alkylating agents, occasionally modify the bases and introduce mutations through mispairing in replication. Currently we are aware that cancer is a genetic disease, where accumulation of genetic and epigenetic alterations in the genome leads to cellular transformation, and that mutation in each patient is unique. To realize the personalized oncology, clinical sequencing test was developed. This year a couple of NGS-based cancer panel tests have been approved for reimbursement by nation-wide healthcare system in Japan. In this seminar I will discuss the future improvement in genomic oncology.


2018 ◽  
Author(s):  
Siming Zhao ◽  
Jun Liu ◽  
Pranav Nanga ◽  
Yuwen Liu ◽  
A. Ercument Cicek ◽  
...  

AbstractIdentifying driver genes is a central problem in cancer biology, and many methods have been developed to identify driver genes from somatic mutation data. However, existing methods either lack explicit statistical models, or rely on very simple models that do not capture complex features in somatic mutations of driver genes. Here, we present driverMAPS (Model-based Analysis of Positive Selection), a more comprehensive model-based approach to driver gene identification. This new method explicitly models, at the single-base level, the effects of positive selection in cancer driver genes as well as highly heterogeneous background mutational process. Its selection model captures elevated mutation rates in functionally important sites using multiple external annotations, as well as spatial clustering of mutations. Its background mutation model accounts for both known covariates and unexplained local variation. Simulations under realistic evolutionary models demonstrate that driverMAPS greatly improves the power of driver gene detection over state-of-the-art approaches. Applying driverMAPS to TCGA data across 20 tumor types identified 159 new potential driver genes. Cross-referencing this list with data from external sources strongly supports these findings. The novel genes include the mRNA methytransferases METTL3-METTL14, and we experimentally validated METTL3 as a potential tumor suppressor gene in bladder cancer. Our results thus provide strong support to the emerging hypothesis that mRNA modification is an important biological process underlying tumorigenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gao Li ◽  
Xiaowei Du ◽  
Xiaoxiong Wu ◽  
Shen Wu ◽  
Yufei Zhang ◽  
...  

Background: Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and heterogeneity. Genetic mutations caused by driver genes are important contributors to the formation of the tumor microenvironment. The purpose of this study is to discuss the expression of cancer driver genes in tumor tissues and their clinical value in predicting the prognosis of HCC.Methods: All data were sourced from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) public databases. Differentially expressed and prognostic genes were screened by the expression distribution of the cancer driver genes and their relationship with survival. Candidate genes were subjected to functional enrichment and transcription factor regulatory network. We further constructed a prognostic signature and analyzed the survival outcomes and immune status between different risk groups.Results: Most cancer driver genes are specifically expressed in cancer tissues. Driver genes may influence HCC progression through processes such as transcription, cell cycle, and T-cell receptor-related pathways. Patients in different risk groups had significant survival differences (p < 0.05), and risk scores showed high predictive efficacy (AUC>0.69). Besides, risk subgroups were also associated with multiple immune functions and immune cell content.Conclusion: We confirmed the critical role of cancer driver genes in mediating HCC progression and the immune microenvironment. Risk subgroups contribute to the assessment of prognostic value in different patients and explain the heterogeneity of HCC.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ege Ülgen ◽  
O. Uğur Sezerman

Abstract Background Cancer develops due to “driver” alterations. Numerous approaches exist for predicting cancer drivers from cohort-scale genomics data. However, methods for personalized analysis of driver genes are underdeveloped. In this study, we developed a novel personalized/batch analysis approach for driver gene prioritization utilizing somatic genomics data, called driveR. Results Combining genomics information and prior biological knowledge, driveR accurately prioritizes cancer driver genes via a multi-task learning model. Testing on 28 different datasets, this study demonstrates that driveR performs adequately, achieving a median AUC of 0.684 (range 0.651–0.861) on the 28 batch analysis test datasets, and a median AUC of 0.773 (range 0–1) on the 5157 personalized analysis test samples. Moreover, it outperforms existing approaches, achieving a significantly higher median AUC than all of MutSigCV (Wilcoxon rank-sum test p < 0.001), DriverNet (p < 0.001), OncodriveFML (p < 0.001) and MutPanning (p < 0.001) on batch analysis test datasets, and a significantly higher median AUC than DawnRank (p < 0.001) and PRODIGY (p < 0.001) on personalized analysis datasets. Conclusions This study demonstrates that the proposed method is an accurate and easy-to-utilize approach for prioritizing driver genes in cancer genomes in personalized or batch analyses. driveR is available on CRAN: https://cran.r-project.org/package=driveR.


EBioMedicine ◽  
2018 ◽  
Vol 27 ◽  
pp. 156-166 ◽  
Author(s):  
Magali Champion ◽  
Kevin Brennan ◽  
Tom Croonenborghs ◽  
Andrew J. Gentles ◽  
Nathalie Pochet ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Constance H. Li ◽  
Syed Haider ◽  
Paul C. Boutros

AbstractCancer is often called a disease of aging. There are numerous ways in which cancer epidemiology and behaviour change with the age of the patient. The molecular bases for these relationships remain largely underexplored. To characterise them, we analyse age-associations in the nuclear and mitochondrial somatic mutational landscape of 20,033 tumours across 35 tumour-types. Age influences both the number of mutations in a tumour (0.077 mutations per megabase per year) and their evolutionary timing. Specific mutational signatures are associated with age, reflecting differences in exogenous and endogenous oncogenic processes such as a greater influence of tobacco use in the tumours of younger patients, but higher activity of DNA damage repair signatures in those of older patients. We find that known cancer driver genes such as CDKN2A and CREBBP are mutated in age-associated frequencies, and these alter the transcriptome and predict for clinical outcomes. These effects are most striking in brain cancers where alterations like SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three cancer datasets, we show that age shapes the somatic mutational landscape of cancer, with clinical implications.


Sign in / Sign up

Export Citation Format

Share Document