scholarly journals High G2M Pathway Score Pancreatic Cancer is Associated with Worse Survival, Particularly after Margin-Positive (R1 or R2) Resection

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2871 ◽  
Author(s):  
Masanori Oshi ◽  
Stephanie Newman ◽  
Yoshihisa Tokumaru ◽  
Li Yan ◽  
Ryusei Matsuyama ◽  
...  

Pancreatic cancer is highly mortal due to uncontrolled cell proliferation. The G2M checkpoint pathway is an essential part of the cell cycle. We hypothesized that a high G2M pathway score is associated with cell proliferation and worse survival in pancreatic cancer patients. Gene set variation analysis using the Hallmark G2M checkpoint gene set was used as a score to analyze a total of 390 human pancreatic cancer patients from 3 cohorts (TCGA, GSE62452, GSE57495). High G2M score tumors enriched other cell proliferation genes sets as well as MKI67 expression, pathological grade, and proliferation score. Independent of other prognostic factors, G2M score was predictive of disease-specific survival in pancreatic cancer. High G2M tumor was associated with high mutation rate of KRAS and TP53 and significantly enriched these pathway gene sets, as well as high infiltration of Th2 cells. High G2M score consistently associated with worse overall survival in 3 cohorts, particularly in R1/2 resection, but not in R0. High G2M tumor in R1/2 highly enriched metabolic and cellular components’ gene sets compared to R0. To our knowledge, this is the first study to use gene set variation analysis as a score to examine the clinical relevancy of the G2M pathway in pancreatic cancer.

2015 ◽  
Vol 47 (3) ◽  
pp. 857-866 ◽  
Author(s):  
TANJA GRIMMIG ◽  
NIELS MATTHES ◽  
KATHARINA HOELAND ◽  
SUDIPTA TRIPATHI ◽  
ANIL CHANDRAKER ◽  
...  

2019 ◽  
Vol 19 (5) ◽  
pp. 417-427 ◽  
Author(s):  
Xiang Chen ◽  
Jilai Tian ◽  
Gloria H. Su ◽  
Jiayuh Lin

Background:Elevated production of the pro-inflammatory cytokine interleukin-6 (IL-6) and dysfunction of IL-6 signaling promotes tumorigenesis and are associated with poor survival outcomes in multiple cancer types. Recent studies showed that the IL-6/GP130/STAT3 signaling pathway plays a pivotal role in pancreatic cancer development and maintenance.Objective:We aim to develop effective treatments through inhibition of IL-6/GP130 signaling in pancreatic cancer.Methods:The effects on cell viability and cell proliferation were measured by MTT and BrdU assays, respectively. The effects on glycolysis was determined by cell-based assays to measure lactate levels. Protein expression changes were evaluated by western blotting and immunoprecipitation. siRNA transfection was used to knock down estrogen receptor α gene expression. Colony forming ability was determined by colony forming cell assay.Results:We demonstrated that IL-6 can induce pancreatic cancer cell viability/proliferation and glycolysis. We also showed that a repurposing FDA-approved drug bazedoxifene could inhibit the IL-6/IL-6R/GP130 complexes. Bazedoxifene also inhibited JAK1 binding to IL-6/IL-6R/GP130 complexes and STAT3 phosphorylation. In addition, bazedoxifene impeded IL-6 mediated cell viability/ proliferation and glycolysis in pancreatic cancer cells. Consistently, other IL-6/GP130 inhibitors SC144 and evista showed similar inhibition of IL-6 stimulated cell viability, cell proliferation and glycolysis. Furthermore, all three IL-6/GP130 inhibitors reduced the colony forming ability in pancreatic cancer cells.Conclusion:Our findings demonstrated that IL-6 stimulates pancreatic cancer cell proliferation, survival and glycolysis, and supported persistent IL-6 signaling is a viable therapeutic target for pancreatic cancer using IL-6/GP130 inhibitors.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaomeng Zhang ◽  
Ningyi Ma ◽  
Weiqiang Yao ◽  
Shuo Li ◽  
Zhigang Ren

Abstract Background The DNA damage and repair pathway is considered a promising target for developing strategies against cancer. RAD51, also known as RECA, is a recombinase that performs the critical step in homologous recombination. RAD51 has recently received considerable attention due to its function in tumor progression and its decisive role in tumor resistance to chemotherapy. However, its role in pancreatic cancer has seldom been investigated. In this report, we provide evidence that RAD51, regulated by KRAS, promotes pancreatic cancer cell proliferation. Furthermore, RAD51 regulated aerobic glycolysis by targeting hypoxia inducible factor 1α (HIF1α). Methods TCGA (The Cancer Genome Atlas) dataset analysis was used to examine the impact of RAD51 expression on overall survival of pancreatic cancer patients. Lentivirus-mediated transduction was used to silence RAD51 and KRAS expression. Quantitative real-time PCR and western blot analysis validated the efficacy of the knockdown effect. Analysis of the glycolysis process in pancreatic cancer cells was also performed. Cell proliferation was determined using a CCK-8 (Cell Counting Kit-8) proliferation assay. Results Pancreatic cancer patients with higher levels of RAD51 exhibited worse survival. In pancreatic cancer cells, RAD51 positively regulated cell proliferation, decreased intracellular reactive oxygen species (ROS) production and increased the HIF1α protein level. KRAS/MEK/ERK activation increased RAD51 expression. In addition, RAD51 was a positive regulator of aerobic glycolysis. Conclusion The present study reveals novel roles for RAD51 in pancreatic cancer that are associated with overall survival prediction, possibly through a mechanism involving regulation of aerobic glycolysis. These findings may provide new predictive and treatment targets for pancreatic cancer.


2020 ◽  
Vol 526 (3) ◽  
pp. 626-632 ◽  
Author(s):  
Yakefujiang Abudurexiti ◽  
Zhaodi Gu ◽  
Kanchan Chakma ◽  
Tatsuo Hata ◽  
Fuyuhiko Motoi ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yebin Lu ◽  
Ling Tang ◽  
Zhipeng Zhang ◽  
Shengyu Li ◽  
Shuai Liang ◽  
...  

Given the low resection rate and chemoresistance of patients with pancreatic cancer (PC), their survival rates are typically poor. Long noncoding RNAs (lncRNAs) have recently been shown to play an important role in tumourigenesis and human cancer progression, including in PC. In this study, we aimed to investigate the role of taurine-upregulated gene 1 (TUG1) in PC. A quantitative polymerase chain reaction was used to analyse TUG1 expression in PC tissues and peritumoural normal tissues. TUG1 was overexpressed in PC tissues compared with that in peritumoural normal tissues, and the high expression of TUG1 was associated with the poor prognosis of patients with PC. Furthermore, TUG1 knockdown significantly inhibited the proliferation and invasion of PC cells both in vitro and in vivo, while overexpression TUG1 promoted tumour cell proliferation, migration, and invasion. TUG1 directly targeted miR-29c, a tumour suppressor in several cancers. TUG1 knockdown significantly increased the expression of miR-29c and subsequently induced the downregulation of integrin subunit beta 1 (ITGB1), matrix metalloproteinase-2 (MMP2), and matrix metalloproteinase-9 (MMP9). The downregulation of miR-29c abolished the TUG1 knockdown-mediated inhibition of tumour growth in vitro and in vivo, whereas the upregulation of miR-29c enhanced the effects of TUG1 knockdown on PC cells. In conclusion, we demonstrate for the first time the oncogenic role of TUG1 in PC. The downregulation of TUG1 significantly inhibited the growth and migratory ability of PC cells in vitro and in vivo by targeting miR-29c. Our study provides a novel potential diagnostic biomarker and therapeutic target for PC.


Sign in / Sign up

Export Citation Format

Share Document