scholarly journals Circulating Cell-Free DNA Combined to Magnetic Resonance Imaging for Early Detection of HCC in Patients with Liver Cirrhosis

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 521
Author(s):  
Marianna Alunni-Fabbroni ◽  
Sabine Weber ◽  
Osman Öcal ◽  
Max Seidensticker ◽  
Julia Mayerle ◽  
...  

Liquid biopsy based on circulating cell-free DNA (cfDNA) is a promising non-invasive tool for the prognosis of hepatocellular cancer (HCC). In this exploratory study we investigated whether cfDNA and gene variants associated with HCC may be found in patients with liver cirrhosis (LC) and thus identify those at an increased risk for HCC. A cohort of 40 LC patients with no suspect neoplastic lesions was included in this study. Next generation sequencing (NGS) of cfDNA isolated from plasma was performed on a panel of 597 selected genes. Images of the patients who underwent MRI with hepatospecific contrast media during the study period were retrospectively re-evaluated (imaging was not part of the prospective study). cfDNA was detected in the plasma of 36 patients with LC. NGS-based analyses identified 20 variants in different combinations. Re-evaluation of the MRI images that were available for a proportion of the patients (n = 27) confirmed the absence of lesions in 8 cases carrying cfDNA without variants. In 6 of 19 patients with identified variants and MRI images available, MRI revealed a precursor lesion compatible with HCC and new lesions were discovered at follow-up in two patients. These precursor lesions were amenable for curative treatments. Mutation analysis revealed selective HCC related gene mutations in a subset of patients with LC, raising the suspect that these patients were at an increased risk for HCC development. MRI findings confirmed suspect nodular lesions of early stage HCC not detected with current standard screening procedures, which were only seen in patients carrying cfDNA variants. This opens a perspective for an HCC screening strategy combining both liquid biopsy and MRI in patients with LC.

2018 ◽  
Vol 20 ◽  
Author(s):  
Ana Barbosa ◽  
Ana Peixoto ◽  
Pedro Pinto ◽  
Manuela Pinheiro ◽  
Manuel R. Teixeira

AbstractCirculating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called ‘liquid biopsy’, as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Zhigang Zuo ◽  
Jiying Tang ◽  
Xiaojun Cai ◽  
Feng Ke ◽  
Zhenzong Shi

Abstract Monitoring of early-stage breast cancer is critical in promptly addressing disease relapse. Circulating cell-free DNA provides a minimally invasive and sensitive means to probing the disease. In a longitudinal analysis of 250 patients with early breast cancer, we compared the circulating cell-free DNA recovered from both plasma and urine specimens. For comparison, 50 healthy controls were also recruited. Specific mutations associated with the disease were profiled to determine the clinical sensitivity and specificity. Correlations of recovered concentrations of cell-free DNA with outcomes were examined to address early prognostication. PIK3CA mutation profiling in both plasma and urinary cell-free DNA showed an agreement of 97.2% compared with the results obtained for tumor tissues. The analysis of healthy controls revealed that cell-free DNA measurements were stable and consistent over time. Over the short 6-month period of monitoring, our analyses showed declines in recovered cell-free DNA; these findings may aid physicians in stratifying patients at higher risk for relapse. Similar results were observed in both plasma and urine specimens (hazard ratios: 2.16 and 2.48, respectively). Cell-free DNA presents a novel and sensitive method for the monitoring of early-stage breast cancer. In the present study, serial measurements of both plasma and urine specimens were useful in probing the disease.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Gulfem D. Guler ◽  
Yuhong Ning ◽  
Chin-Jen Ku ◽  
Tierney Phillips ◽  
Erin McCarthy ◽  
...  

Abstract Pancreatic cancer is often detected late, when curative therapies are no longer possible. Here, we present non-invasive detection of pancreatic ductal adenocarcinoma (PDAC) by 5-hydroxymethylcytosine (5hmC) changes in circulating cell free DNA from a PDAC cohort (n = 64) in comparison with a non-cancer cohort (n = 243). Differential hydroxymethylation is found in thousands of genes, most significantly in genes related to pancreas development or function (GATA4, GATA6, PROX1, ONECUT1, MEIS2), and cancer pathogenesis (YAP1, TEAD1, PROX1, IGF1). cfDNA hydroxymethylome in PDAC cohort is differentially enriched for genes that are commonly de-regulated in PDAC tumors upon activation of KRAS and inactivation of TP53. Regularized regression models built using 5hmC densities in genes perform with AUC of 0.92 (discovery dataset, n = 79) and 0.92–0.94 (two independent test sets, n = 228). Furthermore, tissue-derived 5hmC features can be used to classify PDAC cfDNA (AUC = 0.88). These findings suggest that 5hmC changes enable classification of PDAC even during early stage disease.


2019 ◽  
Vol 65 (7) ◽  
pp. 916-926 ◽  
Author(s):  
Jingyi Li ◽  
Xin Zhou ◽  
Xiaomeng Liu ◽  
Jie Ren ◽  
Jilian Wang ◽  
...  

Abstract BACKGROUND Aberrant DNA hypermethylation of CpG islands occurs frequently throughout the genome in human colorectal cancer (CRC). A genome-wide DNA hypermethylation analysis technique using circulating cell-free DNA (cfDNA) is attractive for the noninvasive early detection of CRC and discrimination between CRC and other cancer types. METHODS We applied the methylated CpG tandem amplification and sequencing (MCTA-Seq) method, with a fully methylated molecules algorithm, to plasma samples from patients with CRC (n = 147) and controls (n = 136), as well as cancer and adjacent noncancerous tissue samples (n = 66). We also comparatively analyzed plasma samples from patients with hepatocellular carcinoma (HCC; n = 36). RESULTS Dozens of DNA hypermethylation markers including known (e.g., SEPT9 and IKZF1) and novel (e.g., EMBP1, KCNQ5, CHST11, APBB1IP, and TJP2) genes were identified for effectively detecting CRC in cfDNA. A panel of 80 markers discriminated early-stage CRC patients and controls with a clinical sensitivity of 74% and clinical specificity of 90%. Patients with early-stage CRC and HCC could be discriminated at clinical sensitivities of approximately 70% by another panel of 128 markers. CONCLUSIONS MCTA-Seq is a promising method for the noninvasive detection of CRC.


2019 ◽  
pp. 1-6
Author(s):  
Gregory M. Riedlinger ◽  
Nahed Jalloul ◽  
Elizabeth Poplin ◽  
Janice M. Mehnert ◽  
Roman Groisberg ◽  
...  

2018 ◽  
Author(s):  
Francois Collin ◽  
Yuhong Ning ◽  
Tierney Phillips ◽  
Erin McCarthy ◽  
Aaron Scott ◽  
...  

AbstractPancreatic cancers are typically diagnosed at late stage where disease prognosis is poor as exemplified by a 5-year survival rate of 8.2%. Earlier diagnosis would be beneficial by enabling surgical resection or earlier application of therapeutic regimens. We investigated the detection of pancreatic ductal adenocarcinoma (PDAC) in a non-invasive manner by interrogating changes in 5-hydroxymethylation cytosine status (5hmC) of circulating cell free DNA in the plasma of a PDAC cohort (n=51) in comparison with a non-cancer cohort (n=41). We found that 5hmC sites are enriched in a disease and stage specific manner in exons, 3’UTRs and transcription termination sites. Our data show that 5hmC density is reduced in promoters and histone H3K4me3-associated sites with progressive disease suggesting increased transcriptional activity. 5hmC density is differentially represented in thousands of genes, and a stringently filtered set of the most significant genes points to biology related to pancreas (GATA4, GATA6, PROX1, ONECUT1) and/or cancer development (YAP1, TEAD1, PROX1, ONECUT1, ONECUT2, IGF1 and IGF2). Regularized regression models were built using 5hmC densities in statistically filtered genes or a comprehensive set of highly variable 5hmC counts in genes and performed with an AUC = 0.94-0.96 on training data. We were able to test the ability to classify PDAC and non-cancer samples with the Elastic net and Lasso models on two external pancreatic cancer 5hmC data sets and found validation performance to be AUC = 0.74-0.97. The findings suggest that 5hmC changes enable classification of PDAC patients with high fidelity and are worthy of further investigation on larger cohorts of patient samples.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2836-2836
Author(s):  
Lieselot Buedts ◽  
Luc Mathieu Fornecker ◽  
Julio Finalet-Ferreiro ◽  
Luc Dehaspe ◽  
Thomas Tousseyn ◽  
...  

Abstract Introduction. For decades, the study of genomic alterations in Hodgkin lymphoma (HL) has been hampered by the low abundance of the malignant Hodgkin Reed-Sternberg (HRS) cells in HL lymph node biopsies. Laser microdissection or flow cytometric cell sorting allow the study of purified HRS cells, but the use of these applications is restricted to specialized research centers. We have recently demonstrated proof-of-principle that copy number aberrations (CNA) in HRS cells can be retrieved in circulating cell-free DNA (cfDNA) of HL patients (Vandenberghe et al., Lancet Haematol. 2015). Taking advantage of the presence of HRS cell-derived DNA (ctDNA) in plasma, the aim of this study was to catalogue CNA in HL in a large series of prospectively recruited HL patients. Methods. We analyzed plasma collected from 177 patients (median age 29, range 3-86) with newly diagnosed HL. 60 cases were diagnosed at our institution, including all disease subtypes and stages, with a majority of nodular sclerosis. 118 patients were recruited in the context of the BREACH study, a multicentric Phase 2B study for unfavorable early classical HL (NCT02292979). After cfDNA extraction, samples were low-pass sequenced (0.1x coverage) and analyzed using ichorCNA, an algorithm that produces read depth-based log2 CNA profiles and quantifies the cfDNA tumor content. Results. At diagnosis, 86 % (152/177) of patients showed obvious genomic imbalances in cfDNA, in early-stage (85 % (131/155)) as well as in advanced cases (95 % (21/22)). Among the abnormal profiles, gains encompassing 2p16, 5p15, 9p24, 12q13 and 19q13 were the most frequent aberrations, occurring in 79 %, 53 %, 57 %, 63 % and 80 % respectively. Losses most frequently affected regions 4q34, 6q23, 11q22 and 13q13, in 53 %, 63 %, 49 % and 59 % of abnormal profiles respectively (fig. 1A). All these CNAs have been previously described with varying frequencies in smaller series of 10-53 patients, using arrayCGH or whole exome sequencing on microdissected HRS cells or even HRS cell-derived cell lines as input material. The observed pattern of CNAs is distinct from the pattern we observed in cfDNA obtained from other hematological malignances, e.g. multiple myeloma and diffuse large B-cell lymphoma (fig. 1B, C). Analysis of follow-up cfDNA samples revealed that the majority of patients rapidly clear their profiles during the first two treatment cycles. Of 123 samples analysed at d15 of cycle 1, 89 samples (72 %) showed a normal profile without CNAs.This suggests a relationship between the fraction of ctDNA in cfDNA and the disease burden. However, we could not find a correlation between the ctDNA fraction as calculated by ichorCNA and the metabolic tumor volume as computed from PET/CT scans. This could be due to several factors, e.g. the small fraction of HRS cells in the metabolic tumor volume. We are currently investigating whether a correlation does exist between the HRS content in the lymph node biopsy and the ctDNA load. Conclusions. In this largest study of CNA in HL to date, we provide a comprehensive catalogue of the types of CNAs, as well as their frequencies and patterns in HL. In this series of 177 patients, gains affecting 2p, 12q and 19q and loss of 6q and 13q emerge as the most commonly recurrent CNAs in HL, across all HL subtypes and stages. The data confirm and extend our previous findings that the majority of HL patients, including those with early-stage disease, have detectable CNAs in their cfDNA at diagnosis. We demonstrate a broad spectrum of aberrations, gains and losses, some of which recur at higher frequencies than gains of 9p24, harboring PD-L1. This warrants further studies on how these CNAs are implicated in the pathogenesis of HL. It further endorses the use of ctDNA as an alternative gateway to the genome of HRS cells, and as a substrate for the evaluation of early disease response. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document