scholarly journals An Insight into Pathophysiological Features and Therapeutic Advances on Ependymoma

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3221
Author(s):  
Seung-Hee Seo ◽  
Shamrat Kumar Paul ◽  
Mita Shikder ◽  
Mushira Khanam ◽  
Popy Ghosh ◽  
...  

Glial cells comprise the non-sensory parts of the central nervous system as well as the peripheral nervous system. Glial cells, also known as neuroglia, constitute a significant portion of the mammalian nervous system and can be viewed simply as a matrix of neural cells. Despite being the “Nervenkitt” or “glue of the nerves”, they aptly serve multiple roles, including neuron repair, myelin sheath formation, and cerebrospinal fluid circulation. Ependymal cells are one of four kinds of glial cells that exert distinct functions. Tumorigenesis of a glial cell is termed a glioma, and in the case of an ependymal cell, it is called an ependymoma. Among the various gliomas, an ependymoma in children is one of the more challenging brain tumors to cure. Children are afflicted more severely by ependymal tumors than adults. It has appeared from several surveys that ependymoma comprises approximately six to ten percent of all tumors in children. Presently, the surgical removal of the tumor is considered a standard treatment for ependymomas. It has been conspicuously evident that a combination of irradiation therapy and surgery is much more efficacious in treating ependymomas. The main purpose of this review is to present the importance of both a deep understanding and ongoing research into histopathological features and prognoses of ependymomas to ensure that effective diagnostic methods and treatments can be developed.

2015 ◽  
Vol 35 (7) ◽  
pp. 685-690
Author(s):  
Eduardo F. Bondan ◽  
Maria de Fátima M. Martins ◽  
Rita Sinigaglia-Coimbra ◽  
Rose Eli G. Rici ◽  
Maria Angélica Miglino ◽  
...  

Abstract Although ultrastructural characteristics of mature neuroglia in the central nervous system (CNS) are very well described in mammals, much less is known in reptiles, especially serpents. In this context, two specimens of Bothrops jararaca were euthanized for morphological analysis of CNS glial cells. Samples from telencephalon, mesencephalon and spinal cord were collected and processed for light and transmission electron microscopy investigation. Astrocytes, oligodendrocytes, microglial cells and ependymal cells, as well as myelin sheaths, presented similar ultrastructural features to those already observed in mammals and tended to maintain their general aspect all over the distinct CNS regions observed. Morphological similarities between reptilian and mammalian glia are probably linked to their evolutionary conservation throughout vertebrate phylogeny.


2019 ◽  
Vol 25 (37) ◽  
pp. 3905-3916
Author(s):  
Dusica Maysinger ◽  
Jeff Ji

Biological and synthetic nanostructures can influence both glia and neurons in the central nervous system. Neurons represent only a small proportion (about 10%) of cells in the brain, whereas glial cells are the most abundant cell type. Non-targeted nanomedicines are mainly internalized by glia, in particular microglia, and to a lesser extent by astrocytes. Internalized nanomedicines by glia indirectly modify the functional status of neurons. The mechanisms of biochemical, morphological and functional changes of neural cells exposed to nanomedicines are still not well-understood. This minireview provides a cross-section of morphological and biochemical changes in glial cells and neurons exposed to different classes of hard and soft nanostructures.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Author(s):  
Giedre Milinkeviciute ◽  
Karina S. Cramer

The auditory brainstem carries out sound localization functions that require an extraordinary degree of precision. While many of the specializations needed for these functions reside in auditory neurons, additional adaptations are made possible by the functions of glial cells. Astrocytes, once thought to have mainly a supporting role in nervous system function, are now known to participate in synaptic function. In the auditory brainstem, they contribute to development of specialized synapses and to mature synaptic function. Oligodendrocytes play critical roles in regulating timing in sound localization circuitry. Microglia enter the central nervous system early in development, and also have important functions in the auditory system’s response to injury. This chapter highlights the unique functions of these non-neuronal cells in the auditory system.


2018 ◽  
Vol 92 (23) ◽  
Author(s):  
Danica M. Sutherland ◽  
Pavithra Aravamudhan ◽  
Melanie H. Dietrich ◽  
Thilo Stehle ◽  
Terence S. Dermody

ABSTRACTViral capsid components that bind cellular receptors mediate critical functions in viral tropism and disease pathogenesis. Mammalian orthoreoviruses (reoviruses) spread systemically in newborn mice to cause serotype-specific disease in the central nervous system (CNS). Serotype 1 (T1) reovirus infects ependymal cells to cause nonlethal hydrocephalus, whereas serotype 3 (T3) reovirus infects neurons to cause fulminant and lethal encephalitis. This serotype-dependent difference in tropism and concomitant disease is attributed to the σ1 viral attachment protein, which is composed of head, body, and tail domains. To identify σ1 sequences that contribute to tropism for specific cell types in the CNS, we engineered a panel of viruses expressing chimeric σ1 proteins in which discrete σ1 domains have been reciprocally exchanged. Parental and chimeric σ1 viruses were compared for replication, tropism, and disease induction following intracranial inoculation of newborn mice. Viruses expressing T1 σ1 head sequences infect the ependyma, produce relatively lower titers in the brain, and do not cause significant disease. In contrast, viruses expressing T3 σ1 head sequences efficiently infect neurons, replicate to relatively higher titers in the brain, and cause a lethal encephalitis. Additionally, T3 σ1 head-expressing viruses display enhanced infectivity of cultured primary cortical neurons compared with T1 σ1 head-expressing viruses. These results indicate that T3 σ1 head domain sequences promote infection of neurons, likely by interaction with a neuron-specific receptor, and dictate tropism in the CNS and induction of encephalitis.IMPORTANCEViral encephalitis is a serious and often life-threatening inflammation of the brain. Mammalian orthoreoviruses are promising oncolytic therapeutics for humans but establish virulent, serotype-dependent disease in the central nervous system (CNS) of many young mammals. Serotype 1 reoviruses infect ependymal cells and produce hydrocephalus, whereas serotype 3 reoviruses infect neurons and cause encephalitis. Reovirus neurotropism is hypothesized to be dictated by the filamentous σ1 viral attachment protein. However, it is not apparent how this protein mediates disease. We discovered that sequences forming the most virion-distal domain of T1 and T3 σ1 coordinate infection of either ependyma or neurons, respectively, leading to mutually exclusive patterns of tropism and disease in the CNS. These studies contribute new knowledge about how reoviruses target cells for infection in the brain and inform the rational design of improved oncolytic therapies to mitigate difficult-to-treat tumors of the CNS.


Sign in / Sign up

Export Citation Format

Share Document