scholarly journals Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3755
Author(s):  
Laure Dutrieux ◽  
Yea-Lih Lin ◽  
Malik Lutzmann ◽  
Raphaël Rodriguez ◽  
Michel Cogné ◽  
...  

Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.

Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2543-2553 ◽  
Author(s):  
Annemiek Broyl ◽  
Dirk Hose ◽  
Henk Lokhorst ◽  
Yvonne de Knegt ◽  
Justine Peeters ◽  
...  

Abstract To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.


2020 ◽  
Vol 21 (20) ◽  
pp. 7539
Author(s):  
Amro M. Soliman ◽  
Teoh Seong Lin ◽  
Pasuk Mahakkanukrauh ◽  
Srijit Das

Multiple myeloma (MM) is a cancerous bone disease characterized by malignant transformation of plasma cells in the bone marrow. MM is considered to be the second most common blood malignancy, with 20,000 new cases reported every year in the USA. Extensive research is currently enduring to validate diagnostic and therapeutic means to manage MM. microRNAs (miRNAs) were shown to be dysregulated in MM cases and to have a potential role in either progression or suppression of MM. Therefore, researchers investigated miRNAs levels in MM plasma cells and created tools to test their impact on tumor growth. In the present review, we discuss the most recently discovered miRNAs and their regulation in MM. Furthermore, we emphasized utilizing miRNAs as potential targets in the diagnosis, prognosis and treatment of MM, which can be useful for future clinical management.


Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2688-2693 ◽  
Author(s):  
F Caligaris-Cappio ◽  
L Bergui ◽  
MG Gregoretti ◽  
G Gaidano ◽  
M Gaboli ◽  
...  

We have verified the hypothesis that multiple myeloma (MM) may be disseminated by circulating clonogenic cells that selectively home to the bone marrow (BM) to receive the signal(s) leading to proliferation, terminal differentiation, and production of the osteoclast activating factors. Long-term cultures of stromal cells have been developed from the BM of nine patients with MM. These cells were mostly fibroblast- like elements, interspersed with a proportion of scattered macrophages and rare osteoclasts. BM stromal cells were CD54+, produced high levels of interleukin-6 (IL-6) and measurable amounts of IL-1 beta, and were used as feeder layers for autologous peripheral blood mononuclear cells (PBMC). After 3 weeks of cocultures, monoclonal B lymphocytes and plasma cells, derived from PBMC, developed and the number of osteoclasts significantly increased. Both populations grew tightly adherent to the stromal cell layer and their expansion was matched by a sharp increase of IL-6 and by the appearance of IL-3 in the culture supernatant. These data attribute to BM stromal cells a critical role in supporting the growth of B lymphocytes, plasma cells, and osteoclasts and the in vivo dissemination of MM.


2019 ◽  
Vol 116 (15) ◽  
pp. 7425-7430 ◽  
Author(s):  
Christian Männe ◽  
Akiko Takaya ◽  
Yuzuru Yamasaki ◽  
Mathias Mursell ◽  
Shintaro Hojyo ◽  
...  

Serum IgG, which is mainly generated from IgG-secreting plasma cells in the bone marrow (BM), protects our body against various pathogens. We show here that the protein SiiE of Salmonella is both required and sufficient to prevent an efficient humoral immune memory against the pathogen by selectively reducing the number of IgG-secreting plasma cells in the BM. Attenuated SiiE-deficient Salmonella induces high and lasting titers of specific and protective Salmonella-specific IgG and qualifies as an efficient vaccine against Salmonella. A SiiE-derived peptide with homology to laminin β1 is sufficient to ablate IgG-secreting plasma cells from the BM, identifying laminin β1 as a component of niches for IgG-secreting plasma cells in the BM, and furthermore, qualifies it as a unique therapeutic option to selectively ablate IgG-secreting plasma cells in autoimmune diseases and multiple myeloma.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2862-2862
Author(s):  
Mingli Yang ◽  
Jingxin Qiu ◽  
Ying Li ◽  
David Ostrov ◽  
Jinghua Jia ◽  
...  

Abstract Abstract 2862 Poster Board II-838 Multiple myeloma (MM) is an incurable hematologic tumor caused by malignant transformation of plasma cells. JAZ (just another zinc finger protein) was previously identified in our laboratory as a unique ZFP that preferentially binds to double-stranded (ds) RNA rather than dsDNA. The JAZ gene is localized to the human chromosome 5q35-ter, which is a specific chromosomal region at which deletions and translocations occur in different hematologic malignancies including multiple myeloma. The NCI Cancer Genome Anatomy Project data base search reveals that a validated SNP (single nucleotide polymorphism) exists for JAZ at an evolutionarily conserved, 3'-untranslated, regulatory region of JAZ mRNA. This specific SNP exists only in the bone marrow cancer but not in the normal tissue, suggesting a potential role for JAZ in hematologic malignancies. Importantly, we recently discovered JAZ as a novel direct, positive regulator of p53 transcriptional activity. The mechanism involves direct binding to p53's C-terminal (negative) regulatory domain to activate “latent” p53 in response to non-genotoxic stress signals. Moreover, we found that interleukin-3 growth factor withdrawal upregulates JAZ expression in factor-dependent hematopoietic cells in association with activation of the p53 tumor suppressor and induction of apoptotic cell death, indicating that the expression of JAZ is important in the stress response. Thus, to examine the role of JAZ expression in hematologic malignancies, we carried out an immunohistochemistry (IHC) study of JAZ expression in murine and human bone marrow cells and in normal and malignant hematologic tissues and cell lines. The affinity-purified rabbit polyclonal antibody JAZ111 was used and its specificity was verified by the peptide inhibition and also using a commercially available monoclonal antibody against JAZ. Results reveal that JAZ is differentially expressed in different types or stages of hematopoietic cells. For instance, morphologically, JAZ appears to be (relatively) abundantly expressed in plasma cells in normal bone marrow samples and such observation was verified by co-staining with a CD38 antibody. Interestingly, results of JAZ111 staining of an MM tissue microarray (24 cases/48 cores, 13 MM and 11 normal tissues) reveal that in ∼50 % of the MM samples the expression of JAZ is substantially down-regulated compared to the normal tissue controls. This supports the notion that JAZ may play a tumor suppressor role. However, there are exceptions that JAZ was found to be highly or over-expressed in some MM samples on the microarray and other regular individual sample slides, suggesting that JAZ may be latent or inactivated in these cases. Co-staining of the MM samples with a p53 antibody shows that expression of p53 is low, which agrees with the notion that p53 expressed in the MM samples is usually the wild type but in a latent state since the p53 gene has been reported to be rarely mutated and the p53 pathway remains intact in multiple myeloma. Thus, we hypothesize that activation or reactivation of JAZ in the MM cells which express abundant but latent JAZ may induce p53 activation to arrest or kill MM cells. We have explored JAZ as a potentially novel molecular target in multiple myeloma by identifying small molecules that bind and activate JAZ. Using a high-throughput, “molecular docking” strategy, we have screened approximately 240,000 small molecules for their ability to interact with JAZ. Based on the Lipinski Rules for Drug Likeness (molecular characteristics favorable for absorption and permeability), we identified ∼70 putative “drug-like” binding molecules with high scores and obtained ∼40 of them from the NCI Developmental Therapeutics Program. We performed the cell viability study, flow cytometry and Western blot analysis to test their effect on the MM cell lines. Results demonstrate that several of the “candidate” JAZ-targeting compounds can potently induce growth arrest and/or cell death in association with p53 activation. Therefore, while further in vitro and in vivo characterization remains to be carried out, the JAZ-“targeting” compounds point the way to develop a potentially novel therapeutic strategy targeting JAZ to treat multiple myeloma. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2926-2926
Author(s):  
Antonella Caivano ◽  
Francesco La Rocca ◽  
Alessandra Favole ◽  
Sonia Carturan ◽  
Enrico Bracco ◽  
...  

Abstract Abstract 2926 Introduction Angiogenesis plays a central role in the progression of both solid and hematological tumors. In particular, in multiple myeloma (MM) the critical role of bone marrow (BM) microenvironment and angiogenesis has been well documented. The past decade has witnessed a dramatic improvement in the therapeutic options in MM. However, the disease remains incurable, underscoring the need for continued efforts towards understanding MM biology and exploitation of novel therapeutic approaches. In this setting, monoclonal antibodies against myeloma-specific cell surface antigens represent a promising therapeutic approach, which is however hampered by a lack of appropriate target structures expressed across all pathogenic myeloma cells. The Eph receptors, a large family of receptor tyrosine kinases (RTKs) activated by ephrins binding, have been implicated in many processes involved in malignancy, including alteration of the tumor microenvironment and in angiogenesis, in both of which EpHA3 likely plays an active role. Aberrant expression of EpHA3 is seen in many types of hematolologic malignancies (some leukemic cell lines, T-cell lymphoma, acute lymphoblastic leukemia, myeloproliferative neoplasms) although it is not expressed ubiquitously. Finally, the over-expression of Eph is believed to be sufficient to confer tumorigenic potential although probably further mechanisms can occur to abnormally activate the receptor. Basing on the role of EpHA3 in haematological malignancies, a first-in-class engineered IgG1 antibody targeting the EpHA (KB004) was developed and it is now under phase I clinical trials in USA and Australia for the treatment of EpHA3 overexpressing hematological myeloid malignancies refractory to conventional treatment. We investigated the EpHA3 role and its preferential membrane–bound by GPI linker ligand EFNA5, in MM patients in order to define EpHA3 as new molecular target for a novel therapeutic approach with a specific anti EpHA3 monoclonal antibody. The EpHA3 expression has been studied through a comparative proteomic analysis between BM endothelial cells (ECs) of patients with MM (MMECs) or with monoclonal gammopathy of undetermined significance (MGECs), of control subjects (normal ECs) and in MM cell lines. Methods After written informed consent, BM aspirates have been collected from 20 MM and 4 MGUS patients. Normal ECs were derived from 3 BM aspirates of subjects with anemia due to iron or vitamin B12 deficiency. We analyzed the expression levels of EpHA3 in normal ECs, MGECs and MMECs and MM cell lines evaluating the mRNA and protein levels by RT-qPCR and by WB coupled to ImmunoFluorescence analysis. The biological effects of EpHA3 targeting in MMECs have been studied silencing the EpHA3 mRNA in MMECs and testing them at 72h after silencing in series of functinal assays including viability assay by trypan blue exclusion staining and by in vitro angiogenesis assay followed by measurement of mesh areas and vessel length. Moreover, we studied EFNA5 mRNA expression levels in Normal ECs, MGECs and MMECs and in MM cell lines by PCR. Results Our data showed that EpHA3 mRNA levels are progressively increased from ECs to MGECs reaching the highest values in MMECs. Subsequent analysis by WB and immunofluorescence confirmed EpHA3 protein upregulation among the different EC types. The MMECs in which EpHA3 has been silenced revealed a protein level reduction of approximately 60% when compared to the control. We could not detect major viability defects. Furthermore, in vitro angiogenesis inhibition was marginal when compared to the not silenced counterpart. To know whether EpHA3 may impact not only MM angiogenesis but also plasma cells, three MM cell lines were studied for the EpHA3 expression. We found the plasma cell lines gave constant over expression of EpHA3. Finally, the preliminary data regarding EFNA5 mRNA expression level showed it is expressed in either MMECs and MM plasma cell lines. The evaluation of KB004 effect on MMECs in term of apoptosis induction and in vitro tube formation inhibition, as well as the analysis of EpHA3 levels in primary MM plasma cells are in progress. Conclusions From this study we expect to characterize the role of the EpHA3in MM patients and to provide experimental evidences supporting the possibility of using EpHA3 as a new molecular target for MM by proving the in vitro efficacy of a monoclonal antibody to target the angiogenesis of MM. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 177 (1) ◽  
pp. 80-94 ◽  
Author(s):  
Hans C. Lee ◽  
Hua Wang ◽  
Veerabhadran Baladandayuthapani ◽  
Heather Lin ◽  
Jin He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document