scholarly journals Characterisation of Collagen Re-Modelling in Localised Prostate Cancer Using Second-Generation Harmonic Imaging and Transrectal Ultrasound Shear Wave Elastography

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5553
Author(s):  
Wael Ageeli ◽  
Xinyu Zhang ◽  
Chidozie N. Ogbonnaya ◽  
Yuting Ling ◽  
Jennifer Wilson ◽  
...  

Prostate cancer has a poor prognosis and high mortality rate due to metastases. Extracellular matrix (ECM) re-modelling and stroma composition have been linked to cancer progression, including key components of cell migration, tumour metastasis, and tissue modulus. Moreover, collagens are one of the most significant components of the extracellular matrix and have been ascribed to many aspects of neoplastic transformation. This study characterises collagen re-modelling around localised prostate cancer using the second harmonic generation of collagen (SHG), genotyping and ultrasound shear wave elastography (USWE) measured modulus in men with clinically localised prostate cancer. Tempo-sequence assay for gene expression of COL1A1 and COL3A1 was used to confirm the expression of collagen. Second-harmonic generation imaging and genotyping of ECM around prostate cancer showed changes in content, orientation, and type of collagen according to Gleason grades (cancer aggressivity), and this correlated with the tissue modulus measured by USWE in kilopascals. Furthermore, there were clear differences between collagen orientation and type around normal and cancer tissues.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rodrigo de Andrade Natal ◽  
Javier Adur ◽  
Carlos Lenz Cesar ◽  
José Vassallo

AbstractExtracellular matrix (ECM) represents more than a mere intercellular cement. It is physiologically active in cell communication, adhesion and proliferation. Collagen is the most abundant protein, making up to 90% of ECM, and 30% of total protein weight in humans. Second-harmonic generation (SHG) microscopy represents an important tool to study collagen organization of ECM in freshly unfixed tissues and paraffin-embedded tissue samples. This manuscript aims to review some of the applications of SHG microscopy in Oncologic Pathology, mainly in the study of ECM of epithelial tumors. It is shown how collagen parameters measured by this technique can aid in the differential diagnosis and in prognostic stratification. There is a tendency to associate higher amount, lower organization and higher linearity of collagen fibers with tumor progression and metastasizing. These represent complex processes, in which matrix remodeling plays a central role, together with cancer cell genetic modifications. Integration of studies on cancer cell biology and ECM are highly advantageous to give us a more complete picture of these processes. As microscopic techniques provide topographic information allied with biologic characteristics of tissue components, they represent important tools for a more complete understanding of cancer progression. In this context, SHG has provided significant insights in human tumor specimens, readily available for Pathologists.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 404
Author(s):  
Marius Kröger ◽  
Johannes Schleusener ◽  
Sora Jung ◽  
Maxim E. Darvin

The assessment of dermal alterations is necessary to monitor skin aging, cancer, and other skin diseases and alterations. The gold standard of morphologic diagnostics is still histopathology. Here, we proposed parameters to distinguish morphologically different collagen I structures in the extracellular matrix and to characterize varying collagen I structures in the skin with similar SAAID (SHG-to-AF Aging Index of Dermis, SHG—second-harmonic generation; AF—autofluorescence) values. Test datasets for the papillary and reticular extracellular matrix from images in 24 female subjects, 36 to 50 years of age, were generated. Parameters for SAAID, edge detection, and fast Fourier transformation directionality were determined. Additionally, textural analyses based on the grey level co-occurrence matrix (GLCM) were conducted. At first, changes in the GLCM parameters were determined in the native greyscale images and, furthermore, in the Hilbert-transformed images. Our results demonstrate a robust set of parameters for noninvasive in vivo classification for morphologically different collagen I structures in the skin, with similar and different SAAID values. We anticipate our method to enable an automated prevention and monitoring system with an age- and gender-specific algorithm.


2006 ◽  
Vol 291 (6) ◽  
pp. L1277-L1285 ◽  
Author(s):  
H. Garrett R. Thompson ◽  
Justin D. Mih ◽  
Tatiana B. Krasieva ◽  
Bruce J. Tromberg ◽  
Steven C. George

The epithelium influences the mesenchyme during dynamic processes such as embryogenesis, wound healing, fibrosis, and carcinogenesis. Since transforming growth factor-β (TGF-β) modulates these processes, we hypothesized that epithelial-derived TGF-β also plays a critical role in maintaining the extracellular matrix at basal conditions. We utilized an in vitro model of the epithelial-mesenchymal trophic unit in the human airways to determine the role of epithelial-derived TGF-β in modulating the extracellular matrix under basal and wound-healing conditions. When differentiated at an air-liquid interface, the human bronchial epithelium produces active TGF-β2 at a concentration of 50–70 pg/ml, whereas TGF-β1 is undetectable. TGF-β2 increases two- to threefold following scrape injury in a dose-dependent fashion and significantly enhances both α-smooth muscle actin expression in the underlying collagen-embedded fibroblasts and secretion of tenascin-C into the matrix. Multiphoton microscopy demonstrates substantially enhanced second harmonic generation from fibrillar collagen in the matrix. Pretreatment of the matrix with either sirolimus (2.5 nM) or paclitaxel (10 nM) abolishes the increases in both TGF-β2 and second harmonic generation in response to epithelial injury. In the absence of the epithelium, exogenous active TGF-β2 (0–400 pg/ml) produces a biphasic response in the second harmonic signal with a minimum occurring at the epithelial-derived basal level. We conclude that epithelial-derived TGF-β2 is secreted in response to injury, significantly alters the bulk optical properties of the extracellular matrix, and its tight regulation may be required for normal collagen homeostasis.


Engineering ◽  
2014 ◽  
Vol 06 (08) ◽  
pp. 485-490 ◽  
Author(s):  
Dominique Dumas ◽  
Elisabeth Werkmeister ◽  
Sebastien Hupont ◽  
Céline Huselstein ◽  
Natalia De Isla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document