scholarly journals 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 190
Author(s):  
Mélanie A. G. Barbosa ◽  
Cristina P. R. Xavier ◽  
Rúben F. Pereira ◽  
Vilma Petrikaitė ◽  
M. Helena Vasconcelos

Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union’s regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.

2018 ◽  
Vol 97 (4) ◽  
pp. e632-e640 ◽  
Author(s):  
Miltiadis Fiorentzis ◽  
Periklis Katopodis ◽  
Helen Kalirai ◽  
Berthold Seitz ◽  
Arne Viestenz ◽  
...  

2010 ◽  
Vol 8 (11) ◽  
pp. 791-801 ◽  
Author(s):  
Jennifer Barrila ◽  
Andrea L. Radtke ◽  
Aurélie Crabbé ◽  
Shameema F. Sarker ◽  
Melissa M. Herbst-Kralovetz ◽  
...  

2018 ◽  
Vol 6 (25) ◽  
pp. 4223-4231 ◽  
Author(s):  
Jiacheng Zhao ◽  
Hongxu Lu ◽  
Yin Yao ◽  
Sylvia Ganda ◽  
Martina H. Stenzel

Internalization of rod-like micelles by breast cancer cells is significantly affected by the stiffness of nano-rods.


2019 ◽  
Vol 91 (15) ◽  
pp. 9522-9529 ◽  
Author(s):  
Lulu H. Tucker ◽  
Gregory R. Hamm ◽  
Rebecca J. E. Sargeant ◽  
Richard J. A. Goodwin ◽  
C. Logan Mackay ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 12994
Author(s):  
Malik Aydin ◽  
Jana Dietrich ◽  
Joana Witt ◽  
Maximiliane S. C. Finkbeiner ◽  
Jonas J.-H. Park ◽  
...  

There is a lack of knowledge regarding the connection between the ocular and nasal epithelia. This narrative review focuses on conjunctival, corneal, ultrastructural corneal stroma, and nasal epithelia as well as an introduction into their interconnections. We describe in detail the morphology and physiology of the ocular surface, the nasolacrimal ducts, and the nasal cavity. This knowledge provides a basis for functional studies and the development of relevant cell culture models that can be used to investigate the pathogenesis of diseases related to these complex structures. Moreover, we also provide a state-of-the-art overview regarding the development of 3D culture models, which allow for addressing research questions in models resembling the in vivo situation. In particular, we give an overview of the current developments of corneal 3D and organoid models, as well as 3D cell culture models of epithelia with goblet cells (conjunctiva and nasal cavity). The benefits and shortcomings of these cell culture models are discussed. As examples for pathogens related to ocular and nasal epithelia, we discuss infections caused by adenovirus and measles virus. In addition to pathogens, also external triggers such as allergens can cause rhinoconjunctivitis. These diseases exemplify the interconnections between the ocular surface and nasal epithelia in a molecular and clinical context. With a final translational section on optical coherence tomography (OCT), we provide an overview about the applicability of this technique in basic research and clinical ophthalmology. The techniques presented herein will be instrumental in further elucidating the functional interrelations and crosstalk between ocular and nasal epithelia.


Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
G Burgstaller ◽  
M Kronberger ◽  
B Oehrle ◽  
O Eickelberg

Sign in / Sign up

Export Citation Format

Share Document