scholarly journals A Shortcut from Metabolic-Associated Fatty Liver Disease (MAFLD) to Hepatocellular Carcinoma (HCC): c-MYC a Promising Target for Preventative Strategies and Individualized Therapy

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 192
Author(s):  
Feifei Guo ◽  
Olga Estévez-Vázquez ◽  
Raquel Benedé-Ubieto ◽  
Douglas Maya-Miles ◽  
Kang Zheng ◽  
...  

Background: Metabolic-associated fatty liver disease (MAFLD) has risen as one of the leading etiologies for hepatocellular carcinoma (HCC). Oncogenes have been suggested to be responsible for the high risk of MAFLD-related HCC. We analyzed the impact of the proto-oncogene c-MYC in the development of human and murine MAFLD and MAFLD-associated HCC. Methods: alb-myctg mice were studied at baseline conditions and after administration of Western diet (WD) in comparison to WT littermates. c-MYC expression was analyzed in biopsies of patients with MAFLD and MAFLD-associated HCC by immunohistochemistry. Results: Mild obesity, spontaneous hyperlipidaemia, glucose intolerance and insulin resistance were characteristic of 36-week-old alb-myctg mice. Middle-aged alb-myctg exhibited liver steatosis and increased triglyceride content. Liver injury and inflammation were associated with elevated ALT, an upregulation of ER-stress response and increased ROS production, collagen deposition and compensatory proliferation. At 52 weeks, 20% of transgenic mice developed HCC. WD feeding exacerbated metabolic abnormalities, steatohepatitis, fibrogenesis and tumor prevalence. Therapeutic use of metformin partly attenuated the spontaneous MAFLD phenotype of alb-myctg mice. Importantly, upregulation and nuclear localization of c-MYC were characteristic of patients with MAFLD and MAFLD-related HCC. Conclusions: A novel function of c-MYC in MAFLD progression was identified opening new avenues for preventative strategies.

Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Benjamin Buchard ◽  
Camille Teilhet ◽  
Natali Abeywickrama Samarakoon ◽  
Sylvie Massoulier ◽  
Juliette Joubert-Zakeyh ◽  
...  

Non-Alcoholic Fatty Liver Disease (NAFLD) is considered as the forthcoming predominant cause for hepatocellular carcinoma (HCC). NAFLD-HCC may rise in non-cirrhotic livers in 40 to 50% of patients. The aim of this study was to identify different metabolic pathways of HCC according to fibrosis level (F0F1 vs. F3F4). A non-targeted metabolomics strategy was applied. We analyzed 52 pairs of human HCC and adjacent non-tumoral tissues which included 26 HCC developed in severe fibrosis or cirrhosis (F3F4) and 26 in no or mild fibrosis (F0F1). Tissue extracts were analyzed using 1H-Nuclear Magnetic Resonance spectroscopy. An optimization evolutionary method based on genetic algorithm was used to identify discriminant metabolites. We identified 34 metabolites differentiating the two groups of NAFLD-HCC according to fibrosis level, allowing us to propose two metabolomics phenotypes of NAFLD-HCC. We showed that HCC-F0F1 mainly overexpressed choline derivatives and glutamine, whereas HCC-F3F4 were characterized by a decreased content of monounsaturated fatty acids (FA), an increase of saturated FA and an accumulation of branched amino acids. Comparing HCC-F0F1 and HCC-F3F4, differential expression levels of glucose, choline derivatives and phosphoethanolamine, monounsaturated FA, triacylglycerides were identified as specific signatures. Our metabolomics analysis of HCC tissues revealed for the first time two phenotypes of HCC developed in NAFLD according to fibrosis level. This study highlighted the impact of the underlying liver disease on metabolic reprogramming of the tumor.


2015 ◽  
Vol 75 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Donald B. Jump ◽  
Christopher M. Depner ◽  
Sasmita Tripathy ◽  
Kelli A. Lytle

The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity and is now the most common chronic liver disease in developed countries. NAFLD is defined as excessive accumulation of lipid in the liver, i.e. hepatosteatosis. The severity of NAFLD ranges from simple fatty liver (steatosis) to non-alcoholic steatohepatitis (NASH). Simple steatosis is relatively benign until it progresses to NASH, which is characterised by hepatic injury, inflammation, oxidative stress and fibrosis. Hepatic fibrosis is a risk factor for cirrhosis and primary hepatocellular carcinoma. Our studies have focused on the impact of diet on the onset and progression of NASH. We developed a mouse model of NASH by feeding Ldlr−/− mice a western diet (WD), a diet moderately high in saturated and trans-fat, sucrose and cholesterol. The WD induced a NASH phenotype in Ldlr−/− mice that recapitulates many of the clinical features of human NASH. We also assessed the capacity of the dietary n-3 PUFA, i.e. EPA (20 : 5,n-3) and DHA (22 : 6,n-3), to prevent WD-induced NASH in Ldlr−/− mice. Histologic, transcriptomic, lipidomic and metabolomic analyses established that DHA was equal or superior to EPA at attenuating WD-induced dyslipidemia and hepatic injury, inflammation, oxidative stress and fibrosis. Dietary n-3 PUFA, however, had no significant effect on WD-induced changes in body weight, body fat or blood glucose. These studies provide a molecular and metabolic basis for understanding the strengths and weaknesses of using dietary n-3 PUFA to prevent NASH in human subjects.


2017 ◽  
Author(s):  
Kenzo Motohashi ◽  
Ahmad Moolla ◽  
Tom Marjot ◽  
Mark Ainsworth ◽  
Jeremy Tomlinson ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 516
Author(s):  
Tomomi Kogiso ◽  
Katsutoshi Tokushige

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and can develop into hepatocellular carcinoma (HCC). The incidence of NAFLD-related HCC, which is accompanied by life-threatening complications, is increasing. Advanced fibrosis and lifestyle-related and metabolic comorbidities, especially obesity and diabetes mellitus, are associated with HCC development. However, HCC is also observed in the non-cirrhotic liver. Often, diagnosis is delayed until the tumor is relatively large and the disease is advanced; an effective screening or surveillance method is urgently required. Recently, the NAFLD/nonalcoholic steatohepatitis (NASH) guidelines of Japan were revised to incorporate new strategies and evidence for the management and surveillance of NAFLD/NASH. Fibrosis must be tested for noninvasively, and the risk of carcinogenesis must be stratified. The treatment of lifestyle-related diseases is expected to reduce the incidence of NAFLD and prevent liver carcinogenesis.


Author(s):  
Xiaming Du ◽  
Chao Zhang ◽  
Xiangqi Zhang ◽  
Zhen Qi ◽  
Sulin Cheng ◽  
...  

This study investigated the impact of Nordic walking on bone properties in postmenopausal women with pre-diabetes and non-alcohol fatty liver disease (NAFLD). A total of 63 eligible women randomly participated in the Nordic walking training (AEx, n = 33), or maintained their daily lifestyle (Con, n = 30) during intervention. Bone mineral content (BMC) and density (BMD) of whole body (WB), total femur (TF), femoral neck (FN), and lumbar spine (L2-4) were assessed by dual-energy X-ray absorptiometry. Serum osteocalcin, pentosidine, receptor activator of nuclear factor kappa-B ligand (RANKL) levels were analyzed by ELISA assay. After an 8.6-month intervention, the AEx group maintained their BMCTF, BMDTF, BMCL2−4, and BMDL2−4, and increased their BMCFN (p = 0.016), while the Con group decreased their BMCTF (p = 0.008), BMDTF (p = 0.001), and BMDL2−4 (p = 0.002). However, no significant group × time interaction was observed, except for BMDL2−4 (p = 0.013). Decreased pentosidine was correlated with increased BMCWB(r = −0.352, p = 0.019). The intervention has no significant effect on osteocalcin and RANKL. Changing of bone mass was associated with changing of pentosidine, but not with osteocalcin and RANKL. Our results suggest that Nordic walking is effective in preventing bone loss among postmenopausal women with pre-diabetes and NAFLD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
So-Ryoung Lee ◽  
Kyung-Do Han ◽  
Eue-Keun Choi ◽  
Seil Oh ◽  
Gregory Y. H. Lip

AbstractWe evaluated the association between nonalcoholic fatty liver disease (NAFLD) and incident atrial fibrillation (AF) and analyzed the impact of NAFLD on AF risk in relation to body mass index (BMI). A total of 8,048,055 subjects without significant liver disease who were available fatty liver index (FLI) values were included. Subjects were categorized into 3 groups based on FLI: < 30, 30 to < 60, and ≥ 60. During a median 8-year of follow-up, 534,442 subjects were newly diagnosed as AF (8.27 per 1000 person-years). Higher FLI was associated with an increased risk of AF (hazard ratio [HR] 1.053, 95% confidence interval [CI] 1.046–1.060 in 30 ≤ FLI < 60, and HR 1.115, 95% CI 1.106–1.125 in FLI ≥ 60). In underweight subjects (BMI < 18.5 kg/m2), higher FLI raised the risk of AF (by 1.6-fold in 30 ≤ FLI < 60 and by twofold in FLI ≥ 60). In normal- and overweight subjects, higher FLI was associated with an increased risk of AF, but the HRs were attenuated. In obese subjects, higher FLI was not associated with higher risk of AF. NAFLD as assessed by FLI was independently associated with an increased risk of AF in nonobese subjects with BMI < 25 kg/m2. The impact of NAFLD on AF risk was accentuated in lean subjects with underweight.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 790
Author(s):  
Monica Lupsor-Platon ◽  
Teodora Serban ◽  
Alexandra Iulia Silion ◽  
George Razvan Tirpe ◽  
Alexandru Tirpe ◽  
...  

Global statistics show an increasing percentage of patients that develop non-alcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma (HCC), even in the absence of cirrhosis. In the present review, we analyzed the diagnostic performance of ultrasonography (US) in the non-invasive evaluation of NAFLD and NAFLD-related HCC, as well as possibilities of optimizing US diagnosis with the help of artificial intelligence (AI) assistance. To date, US is the first-line examination recommended in the screening of patients with clinical suspicion of NAFLD, as it is readily available and leads to a better disease-specific surveillance. However, the conventional US presents limitations that significantly hamper its applicability in quantifying NAFLD and accurately characterizing a given focal liver lesion (FLL). Ultrasound contrast agents (UCAs) are an essential add-on to the conventional B-mode US and to the Doppler US that further empower this method, allowing the evaluation of the enhancement properties and the vascular architecture of FLLs, in comparison to the background parenchyma. The current paper also explores the new universe of AI and the various implications of deep learning algorithms in the evaluation of NAFLD and NAFLD-related HCC through US methods, concluding that it could potentially be a game changer for patient care.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-321767
Author(s):  
Marta B Afonso ◽  
Pedro M Rodrigues ◽  
Miguel Mateus-Pinheiro ◽  
André L Simão ◽  
Maria M Gaspar ◽  
...  

ObjectiveReceptor-interacting protein kinase 3 (RIPK3) is a key player in necroptosis execution and an emerging metabolic regulator, whose contribution to non-alcoholic fatty liver disease (NAFLD) is controversial. We aimed to clarify the impact of RIPK3 signalling in the pathogenesis of human and experimental NAFLD.DesignRIPK3 levels were evaluated in two large independent cohorts of patients with biopsy proven NAFLD diagnosis and correlated with clinical and biochemical parameters. Wild-type (WT) or Ripk3-deficient (Ripk3−/−) mice were fed a choline-deficient L-amino acid-defined diet (CDAA) or an isocaloric control diet for 32 and 66 weeks.ResultsRIPK3 increased in patients with non-alcoholic steatohepatitis (NASH) in both cohorts, correlating with hepatic inflammation and fibrosis. Accordingly, Ripk3 deficiency ameliorated CDAA-induced inflammation and fibrosis in mice at both 32 and 66 weeks. WT mice on the CDAA diet for 66 weeks developed preneoplastic nodules and displayed increased hepatocellular proliferation, which were reduced in Ripk3−/− mice. Furthermore, Ripk3 deficiency hampered tumourigenesis. Intriguingly, Ripk3−/− mice displayed increased body weight gain, while lipidomics showed that deletion of Ripk3 shifted hepatic lipid profiles. Peroxisome proliferator-activated receptor γ (PPARγ) was increased in Ripk3−/− mice and negatively correlated with hepatic RIPK3 in patients with NAFLD. Mechanistic studies established a functional link between RIPK3 and PPARγ in controlling fat deposition and fibrosis.ConclusionHepatic RIPK3 correlates with NAFLD severity in humans and mice, playing a key role in managing liver metabolism, damage, inflammation, fibrosis and carcinogenesis. Targeting RIPK3 and its intricate signalling arises as a novel promising approach to treat NASH and arrest disease progression.


Sign in / Sign up

Export Citation Format

Share Document