scholarly journals Accelerating Kinetic Parameter Identification by Extracting Information from Transient Data: A Hydroprocessing Study Case

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 361
Author(s):  
Ngoc-Yen-Phuong Cao ◽  
Benoit Celse ◽  
Denis Guillaume ◽  
Isabelle Guibard ◽  
Joris W. Thybaut

Hydroprocessing reactions require several days to reach steady-state, leading to long experimentation times for collecting sufficient data for kinetic modeling purposes. The information contained in the transient data during the evolution toward the steady-state is, at present, not used for kinetic modeling since the stabilization behavior is not well understood. The present work aims at accelerating kinetic model construction by employing these transient data, provided that the stabilization can be adequately accounted for. A comparison between the model obtained against the steady-state data and the one after accounting for the transient information was carried out. It was demonstrated that by accounting for the stabilization, combined with an experimental design algorithm, a more robust and faster manner was obtained to identify kinetic parameters, which saves time and cost. An application was presented in hydrodenitrogenation, but the proposed methodology can be extended to any hydroprocessing reaction.

2011 ◽  
Vol 13 (1) ◽  
pp. 77-96 ◽  
Author(s):  
I Brahma ◽  
J N Chi

This is the first part of a study investigating a model-based transient calibration process for diesel engines. The motivation is to populate hundreds of parameters (which can be calibrated) in a methodical and optimum manner by using model-based optimization in conjunction with the manual process so that, relative to the manual process used by itself, a significant improvement in transient emissions and fuel consumption and a sizable reduction in calibration time and test cell requirements is achieved. Empirical transient modelling and optimization has been addressed in the second part of this work, while the required data for model training and generalization are the focus of the current work. Transient and steady-state data from a turbocharged multicylinder diesel engine have been examined from a model training perspective. A single-cylinder engine with external air-handling has been used to expand the steady-state data to encompass transient parameter space. Based on comparative model performance and differences in the non-parametric space, primarily driven by a high engine difference between exhaust and intake manifold pressures (Δ P) during transients, it has been recommended that transient emission models should be trained with transient training data. It has been shown that electronic control module (ECM) estimates of transient charge flow and the exhaust gas recirculation (EGR) fraction cannot be accurate at the high engine Δ P frequently encountered during transient operation, and that such estimates do not account for cylinder-to-cylinder variation. The effects of high engine Δ P must therefore be incorporated empirically by using transient data generated from a spectrum of transient calibrations. Specific recommendations on how to choose such calibrations, how many data to acquire, and how to specify transient segments for data acquisition have been made. Methods to process transient data to account for transport delays and sensor lags have been developed. The processed data have then been visualized using statistical means to understand transient emission formation. Two modes of transient opacity formation have been observed and described. The first mode is driven by high engine Δ P and low fresh air flowrates, while the second mode is driven by high engine Δ P and high EGR flowrates. The EGR fraction is inaccurately estimated at both modes, while EGR distribution has been shown to be present but unaccounted for by the ECM. The two modes and associated phenomena are essential to understanding why transient emission models are calibration dependent and furthermore how to choose training data that will result in good model generalization.


2019 ◽  
Vol 35 (24) ◽  
pp. 5216-5225 ◽  
Author(s):  
Shyam Srinivasan ◽  
William R Cluett ◽  
Radhakrishnan Mahadevan

Abstract Motivation In kinetic models of metabolism, the parameter values determine the dynamic behaviour predicted by these models. Estimating parameters from in vivo experimental data require the parameters to be structurally identifiable, and the data to be informative enough to estimate these parameters. Existing methods to determine the structural identifiability of parameters in kinetic models of metabolism can only be applied to models of small metabolic networks due to their computational complexity. Additionally, a priori experimental design, a necessity to obtain informative data for parameter estimation, also does not account for using steady-state data to estimate parameters in kinetic models. Results Here, we present a scalable methodology to structurally identify parameters for each flux in a kinetic model of metabolism based on the availability of steady-state data. In doing so, we also address the issue of determining the number and nature of experiments for generating steady-state data to estimate these parameters. By using a small metabolic network as an example, we show that most parameters in fluxes expressed by mechanistic enzyme kinetic rate laws can be identified using steady-state data, and the steady-state data required for their estimation can be obtained from selective experiments involving both substrate and enzyme level perturbations. The methodology can be used in combination with other identifiability and experimental design algorithms that use dynamic data to determine the most informative experiments requiring the least resources to perform. Availability and implementation https://github.com/LMSE/ident. Supplementary information Supplementary data are available at Bioinformatics online


2013 ◽  
Vol 816-817 ◽  
pp. 1250-1253
Author(s):  
Yu Zhuo Zhang

SCADA system is a real-time data source, and it can accurately record the real-time information of the power system. Due to renewable energy's connection to the power system, load fluctuations and scheduling switching operation, the power system is often in a dynamic process. The telemetry data provided by SCADA system contains two parts, the steady-state data and transient data. The data cannot be directly used in state estimation. So we propose histogram thinking and extract steady-state data from the real-time telemetry data, which provides good data for state estimation. This method has the character of quick calculating speed and accuracy, and is adapted to the needs of real-time data's processing.


2008 ◽  
Vol 45 ◽  
pp. 161-176 ◽  
Author(s):  
Eduardo D. Sontag

This paper discusses a theoretical method for the “reverse engineering” of networks based solely on steady-state (and quasi-steady-state) data.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1260
Author(s):  
Stefanie Duvigneau ◽  
Robert Dürr ◽  
Jessica Behrens ◽  
Achim Kienle

Biopolymers are a promising alternative to petroleum-based plastic raw materials. They are bio-based, non-toxic and degradable under environmental conditions. In addition to the homopolymer poly(3-hydroxybutyrate) (PHB), there are a number of co-polymers that have a broad range of applications and are easier to process in comparison to PHB. The most prominent representative from this group of bio-copolymers is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this article, we show a new kinetic model that describes the PHBV production from fructose and propionic acid in Cupriavidus necator (C. necator). The developed model is used to analyze the effects of process parameter variations such as the CO2 amount in the exhaust gas and the feed rate. The presented model is a valuable tool to improve the microbial PHBV production process. Due to the coupling of CO2 online measurements in the exhaust gas to the biomass production, the model has the potential to predict the composition and the current yield of PHBV in the ongoing process.


AIChE Journal ◽  
2005 ◽  
Vol 51 (6) ◽  
pp. 1773-1781 ◽  
Author(s):  
Sébastien Issanchou ◽  
Patrick Cognet ◽  
Michel Cabassud

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Cao Taiqiang ◽  
Chen Zhangyong ◽  
Wang Jun ◽  
Sun Zhang ◽  
Luo Qian ◽  
...  

In order to implement a high-efficiency bridgeless power factor correction converter, a new topology and operation principles of continuous conduction mode (CCM) and DC steady-state character of the converter are analyzed, which show that the converter not only has bipolar-gain characteristic but also has the same characteristic as the traditional Boost converter, while the voltage transfer ratio is not related with the resonant branch parameters and switching frequency. Based on the above topology, a novel bridgeless Bipolar-Gain Pseudo-Boost PFC converter is proposed. With this converter, the diode rectifier bridge of traditional AC-DC converter is eliminated, and zero-current switching of fast recovery diode is achieved. Thus, the efficiency is improved. Next, we also propose the one-cycle control policy of this converter. Finally, experiments are provided to verify the accuracy and feasibility of the proposed converter.


Sign in / Sign up

Export Citation Format

Share Document