scholarly journals Advanced Kinetic Modeling of Bio-co-polymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Production Using Fructose and Propionate as Carbon Sources

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1260
Author(s):  
Stefanie Duvigneau ◽  
Robert Dürr ◽  
Jessica Behrens ◽  
Achim Kienle

Biopolymers are a promising alternative to petroleum-based plastic raw materials. They are bio-based, non-toxic and degradable under environmental conditions. In addition to the homopolymer poly(3-hydroxybutyrate) (PHB), there are a number of co-polymers that have a broad range of applications and are easier to process in comparison to PHB. The most prominent representative from this group of bio-copolymers is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this article, we show a new kinetic model that describes the PHBV production from fructose and propionic acid in Cupriavidus necator (C. necator). The developed model is used to analyze the effects of process parameter variations such as the CO2 amount in the exhaust gas and the feed rate. The presented model is a valuable tool to improve the microbial PHBV production process. Due to the coupling of CO2 online measurements in the exhaust gas to the biomass production, the model has the potential to predict the composition and the current yield of PHBV in the ongoing process.

Hoehnea ◽  
2007 ◽  
Vol 34 (2) ◽  
pp. 239-243
Author(s):  
Giancarlo Soncini Júnior ◽  
Sandra Mara Martins Franchetti ◽  
Rosely Ana Piccolo Grandi ◽  
José Carlos Marconato

Most thermophilic moulds are known to be lipase producers and the potential for esterification by reversal of lipase hydrolysis has long been recognized. We evaluated the mycelial aspects of T. lanuginosus growing in Petri dishes in YpSs (yeast extract + starch + agar) medium control and four other media based on YpSs containing different carbon source. These raw materials evaluated as carbon sources suppliers for microorganism were pentaerythritol, oleic acid and pentaerythritol dioleate are commonly used in several classic industrial esters synthesis. Thermomyces lanuginosus growed in all studied media and kept its reproduction capacity, showing that this fungus is a promising alternative for future studies of live microorganism's biocatalysts.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 928
Author(s):  
Micah Flor V. Montefalcon ◽  
Meliton R. Chiong ◽  
Augustus C. Resurreccion ◽  
Sergi Garcia-Segura ◽  
Joey D. Ocon

Arsenic (As) is a naturally occurring element in the environment that poses significant risks to human health. Several treatment technologies have been successfully used in the treatment of As-contaminated waters. However, limited literature has explored advanced electrocoagulation (EC) processes for As removal. The present study evaluates the As removal performance of electrocoagulation, electrochemical peroxidation (ECP), and photo-assisted electrochemical peroxidation (PECP) technologies at circumneutral pH using electroactive iron electrodes. The influence of As speciation and the role of oxidants in As removal were investigated. We have identified the ECP process to be a promising alternative for the conventional EC with around 4-fold increase in arsenic removal capacity at a competitive cost of 0.0060 $/m3. Results also indicated that the rate of As(III) oxidation at the outset of electrochemical treatment dictates the extent of As removal. Both ECP and PECP processes reached greater than 96% As(III) conversion at 1 C/L and achieved 86% and 96% As removal at 5 C/L, respectively. Finally, the mechanism of As(III) oxidation was evaluated, and results showed that Fe(IV) is the intermediate oxidant generated in advanced EC processes, and the contribution of •OH brought by UV irradiation is insignificant.


2009 ◽  
Vol 45 (2) ◽  
pp. 177-188 ◽  
Author(s):  
D. N. RODRÍGUEZ-NAVARRO ◽  
M. CAMACHO ◽  
F. TEMPRANO ◽  
C. SANTAMARÍA ◽  
E. O. LEIDI

SUMMARYAhipa is a legume of great interest for the production of raw materials (starch, sugar, oil and proteins) for industrial use. Its yield potential and ability to fix atmospheric N2 in association with rhizobia makes it an attractive option for low input agriculture systems. At present, it is cultivated on a very small scale as a food crop in a few South American countries. Little information is available on symbiotic N2 fixation in ahipa and no work has been performed on strain selection for inoculant production. Soils in southwest Europe are devoid of specific rhizobia able to nodulate on ahipa. Selecting rhizobia for symbiotic effectiveness from a collection led to the isolation of strains which provided greater shoot growth and N content under controlled conditions. In the field, inoculation at sowing with the selected strains increased significantly seed and tuberous root yield and seed protein content. The amount of N2 fixed, estimated by 15N natural abundance, reached 160–260 kg N ha−1. In previous work, ahipa appeared to be a promising alternative crop for the production of industrial raw materials. The results of the present study showed a yield increase in tuberous roots and seeds when applying effective rhizobia inoculants. Furthermore, a positive soil N balance was left after its cultivation making ahipa even more interesting for sustainable farming systems.


2021 ◽  
pp. 64-71
Author(s):  
Nadezhda V. Nesterova ◽  
Albina Dosaeva

In this article, the authors conducted a macro-diagnostic study of pear fruits of three varieties. A qualitative analysis of raw materials was carried out using color reactions, thin-layer chromatography in pear fruits most widely cultivated in the territory of the Russian Federation. Arbutin was identified in the raw material, which allows us to consider this type of raw material as a promising alternative to lingonberry and bearberry leaves used in official medicine and actualizes further research aimed at developing modern methods of standardization with subsequent inclusion in the developed regulatory documentation.


2021 ◽  
Vol 1028 ◽  
pp. 185-190
Author(s):  
Hafizhah Ellora Della ◽  
Mochamad Zainuri ◽  
Pelangi Az Zahra ◽  
Puri Olyvia Swastika ◽  
Triwikantoro

This research study about the influence of carbon concenttration as coating on electrical conductivity of LiFeSi0.03P0.97O4/C. Synthesis of LiFeSi0.03P0.97O4/C was carried out different carbon concentrations of 7, 9, and 11 wt%. The raw materials used are Fe2O3, Li2CO3, (NH4)2HPO4, SiO2 as ion Si doping, and glucose as carbon sources. The XRD analysis results showed that all the diffraction peaks in samples were the olivine LiFePO4 phase. From the EIS result, Samples with the addition carbon concentration of 9 wt% produce the highest electrical conductivity values of 4.18 x 10-7 S/cm.


2018 ◽  
Vol 238 ◽  
pp. 04006
Author(s):  
Aiping Fei ◽  
Xiaoliang Hao ◽  
Junyu Jiang ◽  
Yong Wang ◽  
Yingxue Teng ◽  
...  

Textured soybean protein (TSP) is a product made from cooking and extrusion of soybean protein, which has been widely used in food, feed and other industries. This text made soybean protein isolated (SPI) and soybean protein concentrate (SPC) as the raw materials to produce filamentous protein production. By experiment, the influence of puffing temperature, screw speed and feed rate on the quality of the protein products was studied. Finally it was concluded that when the temperature of the barrel was 152 °C, the screw rotation speed was 119 rpm, the feed rate was 0.426 kg/min, the TSP product had the biggest expansion degree.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1582 ◽  
Author(s):  
S. Dittrich ◽  
S. Kohsakowski ◽  
B. Wittek ◽  
C. Hengst ◽  
B. Gökce ◽  
...  

PtPd catalysts are state-of-the-art for automotive diesel exhaust gas treatment. Although wet-chemical preparation of PtPd nanoparticles below 3 nm and kg-scale synthesis of supported PtPd/Al2O3 are already established, the partial segregation of the bimetallic nanoparticles remains an issue that adversely affects catalytic performance. As a promising alternative, laser-based catalyst preparation allows the continuous synthesis of surfactant-free, solid-solution alloy nanoparticles at the g/h-scale. However, the required productivity of the catalytically relevant size fraction <10 nm has yet to be met. In this work, by optimization of ablation and fragmentation conditions, the continuous flow synthesis of nanoparticles with a productivity of the catalytically relevant size fraction <10 nm of >1 g/h is presented via an in-process size tuning strategy. After the laser-based preparation of hectoliters of colloid and more than 2 kg of PtPd/Al2O3 wash coat, the laser-generated catalysts were benchmarked against an industry-relevant reference catalyst. The conversion of CO by laser-generated catalysts was found to be equivalent to the reference, while improved activity during NO oxidation was achieved. Finally, the present study validates that laser-generated catalysts meet the size and productivity requirements for industrial standard operating procedures. Hence, laser-based catalyst synthesis appears to be a promising alternative to chemical-based preparation of alloy nanoparticles for developing industrial catalysts, such as those needed in the treatment of exhaust gases.


2014 ◽  
Vol 787 ◽  
pp. 123-127 ◽  
Author(s):  
Ya Li Wang ◽  
Su Ping Cui ◽  
Hui Wang ◽  
Shi Jie Dong ◽  
Yan Yao

Based on the physical and chemical properties of carbide slag, the contents of heavy metals in effluent came from carbide slag drying process were studied, and then the composition of exhaust gas emitted from the carbide slag drying process and calcinations process of raw materials prepared with carbide slag was detected, in order to know whether there are harmful or corrosive gases released and the effect of the emissions on the environment and related equipments. The results indicate that the exhaust gases emitted from the calcination process of raw meal prepared with carbide slag is mainly composed of CO2 and water vapor, and is free from harmful gases. However, a lot of water in carbide slag during the pre-heat and decomposition process under high temperature would accelerate the corrosion of equipments. Simultaneously, a small number of heavy metal ions contained in the carbide slag can cause environmental pollution and sulfides would be adverse to the cement calcination process resulting in the crust blockage of kiln.


2012 ◽  
Vol 31 (4-5) ◽  
pp. 529-537
Author(s):  
G.A. Sweet ◽  
S. Ferenczy ◽  
W.F. Caley ◽  
G.J. Kipouros

AbstractFluorspar, a mineral primarily composed of CaF2 is the most commonly used slag fluidizer in steelmaking. Due to increasing costs for fluorspar steelmakers are seeking alternative means of achieving slag fluidity. The research has concentrated on other minerals or the wastes of other high temperature operating industries. A promising alternative to fluorspar has been identified in a previous work from this laboratory which is the salt cake from secondary aluminum production such as the flux in remelting aluminum scrap and dross. This material is widely available and also considered toxic (meaning that use in steelmaking helps to reduce environmental impacts from disposal). The present work is an investigation of the viability of using mixtures of salt cake and KAlF4 in slag-fluidizing applications by measurements of viscosity and weight loss at high temperatures (to evaluate whether large amounts of potentially harmful gases are formed). In addition, characterization of raw materials and melted slags has been performed. In terms of fluidity the mixtures of aluminum salt cake and KAlF4 are qualified for use as fluidizers. The results of the present study will be used to design plant trials.


2014 ◽  
Vol 16 (27) ◽  
pp. 13595-13600 ◽  
Author(s):  
T. Poux ◽  
A. Bonnefont ◽  
A. Ryabova ◽  
G. Kéranguéven ◽  
G. A. Tsirlina ◽  
...  

A kinetic model sheds light on the mechanism of the hydrogen peroxide reactions on Mn- and Co-perovskite oxides.


Sign in / Sign up

Export Citation Format

Share Document