scholarly journals A Facile and Scalable Approach to Ultrathin NixMg1−xO Solid Solution Nanoplates and Their Performance for Carbon Dioxide Reforming of Methane

Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 544
Author(s):  
Guoqiang Zhang ◽  
Zhiyun Zhang ◽  
Yunqiang Wang ◽  
Yanqiu Liu ◽  
Qiping Kang

Carbon dioxide reforming of methane (CRM) represents a promising method that can effectively convert CH4 and CO2 into valuable energy resources. Herein, ultrathin NixMg1−xO nanoplate catalysts were synthesized using a scalable and facile process involving a one-pot, co-precipitation method in the absence of surfactants. This approach resulted in the synthesis of planar NixMg1−xO catalysts that were much thinner (˂8 nm) with larger specific surface area (>120 m2/g) in comparison to NixMg1−xO catalysts prepared by conventional methods. The ultrathin NixMg1−xO nanoplate catalysts exhibited high thermal stability, catalytic activity, and durability for CRM. Especially, these novel catalysts exhibited excellent anti-coking behavior with a low carbon deposition of 2.1 wt.% after 36 h of continuous reaction compared with the conventional catalysts, under the reaction conditions of the present study. The improved performance of the thin NixMg1−xO nanoplate catalysts was attributed to the high specific surface area and the interaction between metallic nickel nanocatalysts and the solid solution substrates to stabilize the Ni nanoparticles.

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


2012 ◽  
Vol 463-464 ◽  
pp. 543-547 ◽  
Author(s):  
Cheng Feng Li ◽  
Xiao Lu Ge ◽  
Shu Guang Liu ◽  
Fei Yu Liu

Core-shell structured hydroxyapatite (HA)/meso-silica was prepared and used as absorbance of methylene blue (MB). HA/meso-silica was synthesized in three steps: preparation of nano-sized HA by wet precipitation method, coating of dense silica and deposition of meso-silica shell on HA. As-received samples were characterized by Fourier transformed infare spectra, small angle X-ray diffraction, nitrogen adsorption-desorption isotherm and transmission electron microscopy. A wormhole framework mesostructure was found for HA/meso-silica. The specific surface area and pore volume were 128 m2•g-1 and 0.36 cm3•g-1, respectively. From the adsorption isotherm, HA/meso-silica with the great specific surface area exhibited a prominent adsorption capacity of MB (134.0 mg/g) in comparison with bare HA (0 mg/g). This study might shed light on surface modification of conventional low-cost adsorbents for removal of organic pollutants from aqueous solutions.


2010 ◽  
Vol 129-131 ◽  
pp. 784-788 ◽  
Author(s):  
Min Wang ◽  
Qiong Liu ◽  
Dong Zhang

BiVO4/FeVO4 composite photocatalyst samples were prepared by calcining the mixture of FeVO4 and BiVO4 precusor which were prepared through liquid phase precipitation method for further increasing the photocatalytic efficiency of FeVO4. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microsoope(SEM)and specific surface area (BET). The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange (MO) solution under visible light. The XRD patterns indicate that BiVO4/FeVO4 composite photocatalysts consist of triclinic phase and the lattice was not distorted beacause of doping Bi. But the morphology change greatly and the specific surface area has little change. In the experimental conditions used, the optimal photocatalytic activity for all the prepared samples was reached when BiVO4 doping was 22 at%. The degradation rate of MO was increased by 20% or so than that of pure FeVO4.


2011 ◽  
Vol 239-242 ◽  
pp. 2274-2279 ◽  
Author(s):  
Ying Chun Wang ◽  
Wen Hai Huang ◽  
Ai Hua Yao ◽  
De Ping Wang

A simple method to prepare hollow hydroxyapatite (HAP) microspheres with mespores on the surfaces is performed using a precipitation method assisted with Li2O-CaO-B2O3(LCB) glass fabrication process. This research is concerned with the effect of sintering temperature on the microstructure evolution, phase purity, surface morphology, specific surface area, and porosity after sintering process. The microspheres were sintered in air atmosphere at temperatures ranging from 500 to 900 °C. The starting hollow HAP microspheres and the sintered specimens were characterized by scanning electron microscope, X-ray diffractometer, specific surface area analyzer, and Hg porosimetry, respectively. The as-prepared microspheres consisted of calcium deficient hydroxyapatite. The results showed that the as-prepared hollow HAP microspheres had the highest specific surface areas, and the biggest total pore volume. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2~40 nm. The specific surface area and total pore volume of hollow HAP microspheres decreased with increasing sintering temperature. Whereas the mean pore size increased with increasing sintering temperature. It showed that at 700°C, Ca-dHAP decomposes into a biphasic mixture of HAP and β-calcium phosphate(TCP).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fei Wang ◽  
Toshihiro Kuzuya ◽  
Shinji Hirai ◽  
Jihua Li ◽  
Te Li

The decomposition of dolomite into CaO and MgO was performed at 1073 K in vacuum and at 1273 K in an Ar atmosphere. The dolomite calcined in vacuum was found to have a higher specific surface area and a higher micropore volume when compared to the dolomite calcined in the Ar atmosphere. These pyrolysis products of dolomite were reacted with CO2at 673 K for 21.6 ks. On the absorption of CO2, the formation of CaCO3was observed. The degree of absorption of the dolomite calcined in vacuum was determined to be above 50%, which was higher than the degree of absorption of the dolomite calcined in the Ar atmosphere. The CO2absorption and release procedures were repeated three times for the dolomite calcined in vacuum. The specific surface area and micropore volume of calcined dolomite decreased with successive repetitions of the CO2absorption and release cycles leading to a decrease in the degree of absorption of CO2.


2017 ◽  
Vol 748 ◽  
pp. 79-83 ◽  
Author(s):  
Rudeerat Suntako

Zinc oxide (ZnO) nanograins are synthesized by precipitation method filled epoxidized natural rubber compared to conventional ZnO. The synthesized ZnO nanograins are characterized by X-ray diffraction and transmission electron microscopy and found that average primary size of ZnO synthesized around 40 nm and the specific surface area of 28.72 m2 g-1. Furthermore, the cure characteristics, rubber mechanical properties and permanent set were investigated. The obtained results are found that the ZnO nanograins significantly affected to cure characteristics, rubber mechanical properties and permanent set. This is due to small grain size and large specific surface area.


2020 ◽  
Vol 26 (5) ◽  
pp. 200394-0
Author(s):  
Jie Zhang ◽  
Ben Dong ◽  
Ding Ding ◽  
Shilong He ◽  
Sijie Ge

In this paper, MnO<sub>2</sub> catalyst were firstly prepared and modified by four kinds of anionic precursors (i.e., NO<sub>3</sub><sup>-</sup>, AC<sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and Cl<sup>-</sup>) through redox precipitation method. After that, bio-treated coking wastewater (BTCW) was prepared and employed as targeted pollutants to investigate the catalytic ozonation performance of prepared-MnO<sub>2</sub> catalyst was investigated and characterized by the removal efficiencies and mechanism of the prepared bio-treated coking wastewater (BTCW), which was employed as the targeted pollutants. Specifically, the effects of specific surface area, crystal structure, valence state of Mn element and lattice oxygen content on catalytic activity of MnO<sub>2</sub> materials were characterized by BET, XRD and XPS, respectively. Results showed that COD of BTCW could be removed 47.39% under MnO<sub>2</sub>-NO<sub>3</sub><sup>-</sup> catalyst with 2 h reaction time, which was much higher than that of MnO<sub>2</sub>-AC<sup>-</sup> (3.94%), MnO<sub>2</sub>-SO<sub>4</sub><sup>2-</sup> (12.42%), MnO<sub>2</sub>-Cl<sup>-</sup> (12.94%) and pure O<sub>3</sub> without catalyst (21.51%), respectively. So, MnO<sub>2</sub>-NO<sub>3</sub><sup>-</sup> presented the highest catalytic performance among these catalysts. The reason may be attributed to a series of better physiochemical properties including the smaller average grain, the larger specific surface area and active groups, more crystal defect and oxygen vacancy, higher relative content of Mn<sup>3+</sup> and adsorbed oxygen (O<sub>ads</sub>) than that of another three catalysts.


2014 ◽  
Vol 614 ◽  
pp. 11-16 ◽  
Author(s):  
Kristine Salma-Ancane ◽  
Liga Stipniece ◽  
Janis Locs ◽  
Vitalijs Lakevičs ◽  
Zilgma Irbe ◽  
...  

The aim of this study was to investigate the influence of biogenic and synthetic starting materials on properties of porous hydroxyapatite (HAp) bioceramics. HAp powders were synthesized by modified precipitation method using biogenic calcium carbonates (ostrich (Struthio camelus) egg shells, hen (Gallus gallus domesticus) egg shells, snail (Viviparus contectus) shells) and synthetic calcium oxides (Sigma-Aldrich and Fluka). Specific surface area, molecular structure and morphology of obtained powders were determined. As-synthesized HAp powders had a varied specific surface area with a wide range from 83 to 150 m2g-1 depending on CaO source. Porous bodies of HAp were prepared by in situ viscous mass foaming with NH4HCO3 as pore forming agent. Foamed and dried green bodies were sintered at 1100 °C. The obtained bioceramics were investigated using Archimedes method, field emission scanning electron microscopy and Brunauer-Emmett-Teller method. There are considerable differences between porous HAp bioceramics structures prepared from different sources of CaO. The choice of starting material substantially affects the macro-and microstructure of prepared porous bioceramics.


Sign in / Sign up

Export Citation Format

Share Document