A Facile and Scalable Approach to Ultrathin NixMg1−xO Solid Solution Nanoplates and Their Performance for Carbon Dioxide Reforming of Methane
Carbon dioxide reforming of methane (CRM) represents a promising method that can effectively convert CH4 and CO2 into valuable energy resources. Herein, ultrathin NixMg1−xO nanoplate catalysts were synthesized using a scalable and facile process involving a one-pot, co-precipitation method in the absence of surfactants. This approach resulted in the synthesis of planar NixMg1−xO catalysts that were much thinner (˂8 nm) with larger specific surface area (>120 m2/g) in comparison to NixMg1−xO catalysts prepared by conventional methods. The ultrathin NixMg1−xO nanoplate catalysts exhibited high thermal stability, catalytic activity, and durability for CRM. Especially, these novel catalysts exhibited excellent anti-coking behavior with a low carbon deposition of 2.1 wt.% after 36 h of continuous reaction compared with the conventional catalysts, under the reaction conditions of the present study. The improved performance of the thin NixMg1−xO nanoplate catalysts was attributed to the high specific surface area and the interaction between metallic nickel nanocatalysts and the solid solution substrates to stabilize the Ni nanoparticles.