scholarly journals High Stabilization of Enzymes Immobilized on Rigid Hydrophobic Glyoxyl-Supports: Generation of Hydrophilic Environments on Support Surfaces

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 676
Author(s):  
Alejandro H. Orrego ◽  
María Romero-Fernández ◽  
María del Carmen Millán-Linares ◽  
Justo Pedroche ◽  
José M. Guisán ◽  
...  

Very rigid supports are useful for enzyme immobilization to design continuous flow reactors and/or to work in non-conventional media. Among them, epoxy-methacrylic supports are easily functionalized with glyoxyl groups, which makes them ideal candidates for enzyme stabilization via multipoint covalent immobilization. However, these supports present highly hydrophobic surfaces, which might promote very undesirable effects on enzyme activity and/or stability. The hydrophilization of the support surface after multipoint enzyme immobilization is proposed here as an alternative to reduce these undesirable effects. The remaining aldehyde groups on the support are modified with aminated hydrophilic small molecules (glycine, lysine or aspartic acid) in the presence of 2-picoline borane. The penicillin G acylase from Escherichia coli (PGA) and alcohol dehydrogenase from Thermus thermophilus HB27 (ADH2) were immobilized on glyoxyl-functionalized agarose, Relizyme and Relisorb. Despite the similar density of aldehyde groups displayed by functionalized supports, their stabilization effects on immobilized enzymes were quite different: up to 300-fold lower by hydrophobic supports than by highly hydrophilic glyoxyl-agarose. A dramatic increase in the protein stabilities was shown when a hydrophilization treatment of the hydrophobic support surface was done. The PGA immobilized on the glyoxyl-Relisorb hydrophilized with aspartic acid becomes 280-fold more stable than without any treatment, and it is even more stable than the PGA immobilized on the glyoxyl agarose.

2019 ◽  
Vol 25 (24) ◽  
pp. 2661-2676 ◽  
Author(s):  
Sundaresan Bhavaniramya ◽  
Ramar Vanajothi ◽  
Selvaraju Vishnupriya ◽  
Kumpati Premkumar ◽  
Mohammad S. Al-Aboody ◽  
...  

Enzymes exhibit a great catalytic activity for several physiological processes. Utilization of immobilized enzymes has a great potential in several food industries due to their excellent functional properties, simple processing and cost effectiveness during the past decades. Though they have several applications, they still exhibit some challenges. To overcome the challenges, nanoparticles with their unique physicochemical properties act as very attractive carriers for enzyme immobilization. The enzyme immobilization method is not only widely used in the food industry but is also a component methodology in the pharmaceutical industry. Compared to the free enzymes, immobilized forms are more robust and resistant to environmental changes. In this method, the mobility of enzymes is artificially restricted to changing their structure and properties. Due to their sensitive nature, the classical immobilization methods are still limited as a result of the reduction of enzyme activity. In order to improve the enzyme activity and their properties, nanomaterials are used as a carrier for enzyme immobilization. Recently, much attention has been directed towards the research on the potentiality of the immobilized enzymes in the food industry. Hence, the present review emphasizes the different types of immobilization methods that is presently used in the food industry and other applications. Various types of nanomaterials such as nanofibers, nanoflowers and magnetic nanoparticles are significantly used as a support material in the immobilization methods. However, several numbers of immobilized enzymes are used in the food industries to improve the processing methods which not only reduce the production cost but also the effluents from the industry.


Author(s):  
Agnieszka Kołodziejczak-Radzimska ◽  
Long D. Nghiem ◽  
Teofil Jesionowski

Abstract Purpose of Review Untreated wastewater discharge can significantly and negatively impact the state of the environment. Rapid industrialization and economic development have directly contributed to land and water pollution resulting from the application of many chemicals such as organic dyes, pharmaceuticals, and industrial reagents. The removal of these chemicals before effluent discharge is crucial for environmental protection. This review aims to explore the importance of functionalized materials in the preparation of biocatalytic systems and consider their application in eliminating water pollutants. Recent Findings Wastewater treatment methods can be classified into three groups: (i) chemical (e.g., chemical oxidation and ozonation), (ii) physical (e.g., membrane separation and ion exchange), and (iii) biological processes. Biological treatment is the most widely used method due to its cost-effectiveness and eco-friendliness. In particular, the use of immobilized enzymes has recently become more attractive as a result of scientific progress in advanced material synthesis. The selection of an appropriate support plays an important role in the preparation of such biologically active systems. Recent studies have demonstrated the use of various materials for enzyme immobilization in the purification of water. Summary This review identifies and discusses different biocatalytic systems used in the enzymatic degradation of various water pollutants. Materials functionalized by specific groups can serve as good support matrices for enzyme immobilization, providing chemical and thermal stability to support catalytic reactions. Enzymatic biocatalysis converts the pollutants into simpler products, which are usually less toxic than their parents. Due to immobilization, the enzyme can be used over multiple cycles to reduce the cost of wastewater treatment. Future studies in this field should focus on developing new platforms for enzyme immobilization in order to improve degradation efficiency.


2020 ◽  
Vol 11 (7) ◽  
pp. 6632-6642 ◽  
Author(s):  
Behzad Gazme ◽  
Karamatollah Rezaei ◽  
Chibuike C. Udenigwe

Immune-reactivity reduction of egg white proteins by free and immobilized enzymes and determination of degraded IgE epitopes.


1993 ◽  
Vol 42 (4) ◽  
pp. 455-464 ◽  
Author(s):  
José M. Guisán ◽  
Gregorio Alvaro ◽  
Roberto Fernandez-Lafuente ◽  
Cristina M. Rosell ◽  
Jose L. Garcia ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1776 ◽  
Author(s):  
Massimiliano Magro ◽  
Davide Baratella ◽  
Andrea Venerando ◽  
Giulia Nalotto ◽  
Caroline R. Basso ◽  
...  

Generally, enzyme immobilization on nanoparticles leads to nano-conjugates presenting partially preserved, or even absent, biological properties. Notwithstanding, recent research demonstrated that the coupling to nanomaterials can improve the activity of immobilized enzymes. Herein, xanthine oxidase (XO) was immobilized by self-assembly on peculiar naked iron oxide nanoparticles (surface active maghemite nanoparticles, SAMNs). The catalytic activity of the nanostructured conjugate (SAMN@XO) was assessed by optical spectroscopy and compared to the parent enzyme. SAMN@XO revealed improved catalytic features with respect to the parent enzyme and was applied for the electrochemical studies of xanthine. The present example supports the nascent knowledge concerning protein conjugation to nanoparticle as a means for the modulation of biological activity.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Anamika Gambhir ◽  
Arun Kumar ◽  
Bansi D. Malhotra ◽  
Beata Miksa ◽  
Stanislaw Slomkowski

AbstractUrease has been covalently immobilized on polypyrrole microspheres chemically linked to conducting polypyrrole-polyvinyl sulfonate (PPY-PVS) films. These films were electrochemically prepared during 5 - 7 min at a constant current of 2 mA using indium - tin oxide (ITO) glass plates as the working electrode, and a standard calomel electrode as the reference electrode. Urease covalently linked to polypyrrole microspheres (by reaction of protein amino groups with aldehyde groups on the surface of the microspheres) was entrapped/adsorbed onto electrochemically prepared conducting PPY-PVS films deposited on ITO. Potentiometric measurements undertaken on these conducting polymer electrodes using an ammonium ion analyzer reveal that they can be used for estimating the urea concentration in solutions from 5·10-3 mol/l to 6·10-2 mol/l.


2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Milena Žuža ◽  
Nenad Milosavić ◽  
Zorica Knežević-Jugović

AbstractAn approach to stable covalent immobilization of chemically modified penicillin G acylase from Escherichia coli on Sepabeads® carriers with high retention of hydrolytic activity and thermal stability is presented. The two amino-activated polymethacrylate particulate polymers with different spacer lengths used in the study were Sepabeads® EC EA and Sepabeads® EC HA. The enzyme was first modified by cross-linking with polyaldehyde derivatives of starch in order to provide it with new useful functions. Such modified enzyme was then covalently immobilized on amino supports. The method seems to provide a possibility to couple the enzyme without risking a reaction at the active site which might cause the loss of activity. Performances of these immobilized biocatalysts were compared with those obtained by the conventional method with respect to activity and thermal stability. The thermal stability study shows that starch-PGA immobilized on Sepabeads EC-EA was almost 4.5-fold more stable than the conventionally immobilized one and 7-fold more stable than free non-modified PGA. Similarly, starch-PGA immobilized on Sepabeads EC-HA was around 1.5- fold more stable than the conventionally immobilized one and almost 9.5-fold more stable than free non-modified enzyme.


Sign in / Sign up

Export Citation Format

Share Document