scholarly journals Hydrothermal Synthesis of FeOOH and Fe2O3 Modified Self-Organizing Immobilized TiO2 Nanotubes for Photocatalytic Degradation of 1H-Benzotriazole

Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1371
Author(s):  
Tihana Čižmar ◽  
Vedran Kojić ◽  
Marko Rukavina ◽  
Lidija Brkljačić ◽  
Krešimir Salamon ◽  
...  

In this study, titanium dioxide nanotubes were prepared by electrochemical anodization technique and modified with an aqueous solution of FeCl3 using hydrothermal synthesis method to control the amount and distribution of iron compounds on the anatase TiO2 nanotubes. The objective was to synthesize immobilized FeOOH@TiO2 or Fe2O3@TiO2 photocatalysts designed for the flow-through reactor systems; to investigate thermal treatment effect on the photocatalytic efficiency; to determine appropriate Fe-compounds concentration for the maximum photocatalytic activity improvement, and to explain the mechanism responsible for the enhancement. The photocatalysts were tested for the degradation of 1H-benzotriazole in water under UV/solar light irradiation. Up to two times increase in the photocatalytic activity was obtained when TiO2 nanotubes were modified with 0.8 mM Fe. At higher Fe concentrations (8 mM and 80 mM), the photocatalytic activity of the given photocatalysts decreased. To confirm the formation of FeOOH or Fe2O3 species, and to clarify the mechanism of photoactivity, X-ray diffraction (XRD), Raman spectroscopy (RS), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDS) and UV-Vis spectroscopy were used.

Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Tihana Čižmar ◽  
Ivana Panžić ◽  
Krešimir Salamon ◽  
Ivana Grčić ◽  
Lucija Radetić ◽  
...  

Cu-modified immobilized nanoporous TiO2 photocatalysts, prepared by electrochemical anodization of titanium foils, were obtained via four different synthesis methods: hydrothermal synthesis, anodization with Cu source, electrodeposition, and spin-coating, using two different copper sources, Cu(NO3)2 and Cu(acac)2. The objective of this research was to investigate how copper modifications can improve the photocatalytic activity of immobilized nanoporous TiO2 under the UV/solar light irradiation. The best photocatalytic performances were obtained for Cu-modifications using spin-coating. Therefore, the effect of irradiated catalyst surface areas on the adsorption of model pollutants, methylene blue (MB) and 1H-benzotriazole (BT), was examined for samples with Cu-modification by the spin-coating technique. The mechanisms responsible for increased degradation of MB and BT at high Cu concentrations (0.25 M and 0.5 M) and decreased degradation at low Cu loadings (0.0625 M and 0.125 M) were explained. 1H-benzotriazole was used to study the photocatalytic activity of the given samples because it is highly toxic and present in most water systems. The characterization of the synthesized Cu-modified photocatalysts in terms of phase composition, crystal structure, and morphology were investigated using X-ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy, and Energy Dispersive X-ray spectroscopy.


2018 ◽  
Vol 7 (4) ◽  
pp. 372-379 ◽  
Author(s):  
Burcu Sümer Tüzün ◽  
Judit Hohmann ◽  
Bijen Kivcak

AbstractA green synthesis method of silver nanoparticles (AgNPs) usingCentaurea virgataLam. extract and the isolated compound eupatorin was investigated in this study. Ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM)/energy-dispersive X-ray (EDX) spectroscopy, thermal gravimetric analysis, X-ray diffraction analysis and zeta potential were used for characterization of AgNPs. The UV-Vis spectrum exhibited a characteristic absorption band at 420 nm for monodisperse nanoparticles. FTIR measurements also proved the formation. X-ray diffraction patterns showed peaks at (110) and (112), which are characteristic for hexagonal crystals and also showed peaks at (111), (200) and (240), which are characteristic for orthorhombic crystals. The TEM images of AgNPs show that the morphology of AgNPs was predominantly spherical. Obtained AgNPs were highly stable according to the zeta potential values. The nitric oxide scavenging activity, which is also related to anticancer activity, of AgNPs was evaluated. It can be concluded thatC. virgataLam. extract and eupatorin can be used as a reducing agent for potential antioxidant AgNP formation.


2014 ◽  
Vol 787 ◽  
pp. 35-40 ◽  
Author(s):  
Xiao Yan Zhou ◽  
Peng Wei Zhou ◽  
Hao Guo ◽  
Bo Yang ◽  
Ru Fei Ren

The p-n junction photocatalysts, p-CuO (at. 0-25%)/n-ZnO nanocomposite were prepared through hydrothermal method without using any organic solvent or surfactant. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray spectroscopy, and UV-vis spectroscopy. The results demonstrated that the CuO/ZnO nanocomposite presented a two-dimensional morphology composed of sheet-like ZnO nanostructures adorned with CuO nanoparticles. The photocatalytic activity of CuO/ZnO with different Cu/Zn molar rations and pure ZnO synthesized by the identical synthetic route were evaluated by degrading methylene blue (MB) dye under UV-visible light irradiation. The CuO/ZnO with Cu/Zn molar ratio of 4% exhibits the highest photocatalytic activity compared that of the other photocatalysts under the identical conditions. It is mainly attributed to the increased charge separation rate in the nanocomposite and the extended photo-responding range.


Author(s):  
Nguyen Quang Long

For a few decades, Titanium Dioxide (TiO2) has been the most studied photocatalyst due to its significant optical property. In the paper, TiO2 pigment powder (Anatase form) was selected as a precursor to prepare a variety of Black-TiO2 samples, and the typical material was then evaluated for its photocatalytic activity in organic pollutant treatment. Some properties of Black-TiO2 were determined via common methods such as sensory analysis, X-Ray diffraction, and bandgap measurement obtained from UV-Vis spectroscopy. As a result, the material was successfully converted to more than 40% organic pollutant as Methyl Orange (C14H14N3NaO3S) for an hour, as two times higher than that of the amount converted by pristine TiO2. In addition, Black-TiO2 performed much better photocatalytic activity in an acidic medium in comparison with a neutral one, and the material also remained its activity as more than 90% after three time-continuous recycling operations.


2009 ◽  
Vol 1171 ◽  
Author(s):  
Chao-Ming Huang ◽  
Guan T. Pan ◽  
Lung C. Chen ◽  
C.K. Thomas Yang ◽  
Wen S. Chang

AbstractVisible-light-driven Ag3VO4 photocatalysts were successfully synthesized using low-temperature hydrothermal synthesis method. Under various hydrothermal conditions, the structures of silver vanadates were tuned by manipulating the hydrothermal time and the ratio of silver to vanadium. X-ray diffraction (XRD) results reveal that the powders prepared in a stoichiometric ratio consisted of pure α-Ag3VO4 or mixed phases of Ag4V2O7 and α-Ag3VO4. With increasing the Ag-to-V mole ratio to 6:1, the resulting samples were identified as pure monoclinic structure α-Ag3VO4. UV-vis spectroscopy indicated that silver vanadate particles had strong visible light absorption with associated band gaps in the range of 2.2-2.5 eV. The sample synthesized in the excess silver exhibited higher photocatalytic activity than that synthesized in a stoichiometric ratio. The powder synthesized at silver-rich at 140℃ for 4 h (SHT4) exhibited the highest photocatalytic activity among all samples. The reactivity of SHT4 (surface area, 3.52 m2 g-1) on the decomposition of gaseous benzene was about 16 times higher than that of P25 (surface area, 49.04 m2 g-1) under visible light irradiation. A well developed crystallinity of Ag3VO4 of SHT 4 was considered to enhance the photocatalytic efficiency.


2012 ◽  
Vol 455-456 ◽  
pp. 110-114 ◽  
Author(s):  
Xuan Dong Li ◽  
Xi Jiang Han ◽  
Wen Ying Wang ◽  
Xiao Hong Liu ◽  
Yan Wang ◽  
...  

Nb-doped TiO2 powders with different concentrations of Nb have been synthesized by a sol-gel method and characterized by a series of technologies including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy. The photocatalytic activity of Nb-doped TiO2 is evaluated by degradation efficiency of methyl orange in aqueous solution. The results indicate that the photocatalytic activity of Nb-doped TiO2 synthesized with a Nb/Ti molar ratio of 5% is higher than that of TiO2 under the visible light.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2714
Author(s):  
Mario Bohač ◽  
Tihana Čižmar ◽  
Vedran Kojić ◽  
Jan Marčec ◽  
Krunoslav Juraić ◽  
...  

A novel low-cost synthesis of barium-modified TiO2 nanotube (TNT) arrays was used to obtain an immobilized photocatalyst for degradation of diclofenac. TNT arrays were prepared by electrochemical anodization of titanium thin films deposited on fluorine-doped tin oxide (FTO) coated glass by magnetron sputtering, ensuring transparency and immobilization of the nanotubes. The Ba-modifications were obtained by annealing solutions of Ba(OH)2 spin coated on top of TNT. Three different concentrations of Ba(OH)2 were used (12.5 mM, 25 mM and 50 mM). The crystalline structure, morphology and presence of Ba were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Ba-modified TiO2 nanotubes (BTNT) were tested for photocatalytic degradation of diclofenac under UV/Vis radiation and it was proven that all of the Ba-modified samples showed an increase in photocatalytic activity with respect to the unmodified TNTs. The most efficient photocatalyst was the sample prepared with 25 mM Ba(OH)2 which showed 90% diclofenac degradation after 60 min. This result was in agreement with cyclic voltammetry measurements that showed the largest increase in photo-oxidation current densities for the same sample due to the increased generation of •OH radicals obtained by a more efficient photogenerated charge separation.


2018 ◽  
Vol 54 (1A) ◽  
pp. 42
Author(s):  
Le Thi Ngoc Tu

The TiO2 nanotubes were fabricated by the hydrothermal method. Then, Ag nanoparticles with the varying ratio were attached on the TiO2 nanotubes by photoreduction. The characteristics of structure, morphology, chemical composition and of TiO2 nanotubes modified Ag (Ag-TNTs) was investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and the absorption spectral of Methylene blue (MB) solution. The results showed that Ag-TNTs have fairly uniform length with Ag particles immobilized on the tube. The photocatalysis TiO2 nanotubes (TNTs) is higher than Ag-TNTs in UV range and lower than Ag-TNTs in the visible light. And the photocatalytic activity of Ag-TNTs with 5 wt.% Ag is highest in the visible range.


2014 ◽  
Vol 525 ◽  
pp. 123-127
Author(s):  
Ning Zhang Wang ◽  
Jing Liu ◽  
Shi Feng Liu ◽  
Shi Long Rong

In this research, SrTiO3 powder is prepared by hydrothermal synthesis method. In the process of reaction, SrCl2 and Ti (OC4H9) 4 with NaOH can obtain the precursor as reactants and mineralizer respectively. Then take the precursor into autoclave without any pretreatment, to make it react under the temperature of 150 °C and the stirring speed 360 r/min in 8 hours. After the reaction finishing, the prepared SrTiO3 powder were charactered by X-ray diffraction and SEM. the results of experiment showed that we succeed in making nanostrontium titanate powder under above condition and the grain size is almost 60 nm.


2015 ◽  
Vol 1087 ◽  
pp. 218-222
Author(s):  
Siti Aida Ibrahim ◽  
Srimala Sreekantan

Nanostructured Fe-TiO2 and TiO2 with anatase structure were synthesized via combination method of sol-gel and peptization process. The samples were characterized by X-ray diffraction (XRD), Transmission emission microscopy (TEM) and UV-Vis spectroscopy (UV-Vis). The presence of Fe3+ ion shifted the absorption profile of TiO2 to the longer wavelength side of the spectrum, indicating an obvious photocatalytic activity under visible irradiation. Photocatalytic activity of the samples were evaluated by methyl orange (MO) discolouration under UV-light irradiation. Compared with the pure TiO2 nanoparticles, the Fe-TiO2 nanoparticles exhibited higher photocatalytic activity with 95% discoloration within 2 h.


Sign in / Sign up

Export Citation Format

Share Document