scholarly journals Correlation of Morphology Evolution with Carrier Dynamics in InN Films Heteroepitaxially Grown by MOMBE

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 886
Author(s):  
Fang-I Lai ◽  
Jui-Fu Yang ◽  
Woei-Tyng Lin ◽  
Wei-Chun Chen ◽  
Yu-Chao Hsu ◽  
...  

In this study, we report the catalyst-free growth of n-type wurtzite InN, along with its optical properties and carrier dynamics of different surface dimensionalities. The self-catalyzed epitaxial growth of InN nanorods grown by metal–organic molecular-beam epitaxy on GaN/Al2O3(0001) substrates has been demonstrated. The substrate temperature is dominant in controlling the growth of nanorods. A dramatic morphological change from 2D-like to 1D nanorods occurs with decreasing growth temperature. The InN nanorods have a low dislocation density and good crystalline quality, compared with InN films. In terms of optical properties, the nanorod structure exhibits strong recombination of Mahan excitons in luminescence, and an obvious spatial correlation effect in phonon dispersion. The downward band structure at the nanorod surface leads to the photon energy-dependent lifetime being upshifted to the high-energy side.

2011 ◽  
Vol 1342 ◽  
Author(s):  
K.P. O’Donnell

ABSTRACTThis talk reviews work on the optical properties of Eu-doped GaN at the Semiconductor Spectroscopy laboratory of the University of Strathclyde. The principal experimental technique used has been lamp-based Photoluminescence/Excitation (PL/E) spectroscopy on samples produced mainly by high-energy ion implantation and annealing, either at low or high pressures of nitrogen, as described by Lorenz et al. [1]. These have been supplemented by samples doped in-situ either by Molecular Beam Epitaxy or Metallorganic Vapour Phase Epitaxy. Magneto-optic experiments on GaN:Eu were carried out in collaboration with the University of Bath.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Faouzi Saidi ◽  
Mouna Bennour ◽  
Lotfi Bouzaïene ◽  
Larbi Sfaxi ◽  
Hassen Maaref

We have investigated the optical properties of InAs/GaAs (113)A quantum dots grown by molecular beam epitaxy (MBE) capped by (In,Ga)As. Reflection high-energy electron diffraction (RHEED) is used to investigate the formation process of InAs quantum dots (QDs). A broadening of the PL emission due to size distribution of the dots, when InAs dots are capped by GaAs, was observed. A separation between large and small quantum dots, when they are encapsulated by InGaAs, was shown due to hydrostatic and biaxial strain action on large and small dots grown under specifically growth conditions. The PL polarization measurements have shown that the small dots require an elongated form, but the large dots present a quasi-isotropic behavior.


2004 ◽  
Vol 43 (No. 10A) ◽  
pp. L1312-L1314 ◽  
Author(s):  
Kimiaki Yamaguchi ◽  
Hiroyuki Tomioka ◽  
Tatsuya Yui ◽  
Takashi Suemasu ◽  
Koji Ando ◽  
...  

2018 ◽  
Vol 58 (1) ◽  
Author(s):  
Sandra Stanionytė ◽  
Artūras Vailionis ◽  
Virginijus Bukauskas ◽  
Saulius Tumėnas ◽  
Andrius Bičiūnas ◽  
...  

A series of 1.5 μm-thick epitaxial GaAsBi layers have been grown by molecular beam epitaxy on semi-insulating GaAs(100) substrates at temperatures ranging from 300 to 370°C. Complex studies were carried out with a focus to optimize the technological parameters for application of these layers in photoconductive THz components. The investigation of crystalline structure, layer morphology, optical properties, and characteristics of carrier dynamics was performed. Up to 12% of Bi incorporation has been confirmed by optical and structural analyses of GaAsBi layers grown at relatively low temperatures of about 300°C. The carrier lifetimes of these layers varied from 1 to 3 ps. Thick GaAsBi layers grown at higher than 350°C temperatures exhibited higher crystalline quality and longer carrier lifetimes reaching even tens of picoseconds. The Bi content in high-temperature-grown GaAsBi varied from 3 to 7% Bi.


MRS Advances ◽  
2018 ◽  
Vol 3 (59) ◽  
pp. 3477-3482 ◽  
Author(s):  
Fatima ◽  
Jon Vogel ◽  
Talgat Inerbaev ◽  
Nuri Oncel ◽  
Dmitri Kilin

ABSTRACTThe ground state structure, optical properties and charge carrier dynamics of silicon nanowire (SiNW) grown in <211> crystallographic direction is studied as a function of wavevector using density functional theory. This nanowire can be used as fundamental unit of nanoelectronic devices. The optical properties are computed under assumption of momentum conservation$\Delta \vec{k} = 0$. The on-the-fly non-adiabatic couplings for electronic degrees of freedom are obtained along the ab initio molecular dynamics nuclear trajectories, which are used as parameters for Redfield density matrix equation of motion. By investigating the photo-induced process on this nanowire, it is shown that high-energy photoexcitation relaxes to the band gap edge within 75 ps. The results of these calculations help to understand the mechanism of electron transfer process on the Si nanowire.


2016 ◽  
Vol 16 (12) ◽  
pp. 1622-1626 ◽  
Author(s):  
Kwangwook Park ◽  
Sooraj Ravindran ◽  
Gun Wu Ju ◽  
Jung-Wook Min ◽  
Seokjin Kang ◽  
...  

2012 ◽  
Vol 27 (3) ◽  
pp. 301-304 ◽  
Author(s):  
Zhi-Yuan ZHENG ◽  
Tie-Xin CHEN ◽  
Liang CAO ◽  
Yu-Yan HAN ◽  
Fa-Qiang XU

Author(s):  
L. Solymar ◽  
D. Walsh ◽  
R. R. A. Syms

Both intrinsic and extrinsic semiconductors are discussed in terms of their band structure. The acceptor and donor energy levels are introduced. Scattering is discussed, from which the conductivity of semiconductors is derived. Some mathematical relations between electron and hole densities are derived. The mobilities of III–V and II–VI compounds and their dependence on impurity concentrations are discussed. Band structures of real and idealized semiconductors are contrasted. Measurements of semiconductor properties are reviewed. Various possibilities for optical excitation of electrons are discussed. The technology of crystal growth and purification are reviewed, in particular, molecular beam epitaxy and metal-organic chemical vapour deposition.


Sign in / Sign up

Export Citation Format

Share Document